
Safety of Software-Intensive Systems from First Principles

Authors: Paul Albertella and Paul Sherwood

© CODETHINK LIMITED 2021 1 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

1 Safety of Software-Intensive
Systems from First Principles

Over the last several decades, the scale and
complexity of critical software has increased
by orders of magnitude. In cars for example,
we have seen a tremendous growth from
simple microcontrollers running a few
thousand lines of code, to multi-function
ECUs, advanced infotainment and driver assist
capabilities; systems in a typical vehicle may
involve over 100 million lines of code.

The international standards that are relevant
to safety were mainly established long before
this massive expansion took place. IEC 61508
and ISO 26262, for example, mainly describe
approaches that are viable for less complex
systems based on microcontroller
architectures, but difficult or impossible to
apply for modern systems involving multi-core
microprocessors.

Many software and safety professionals
recognise this challenge, and teams around
the world are exploring how to assure safety
in highly complex systems, by extending and
improving upon existing methods, or by
devising new ones.

We believe that the key problems can be
summarised as follows:

● It is not feasible to consider safety of
software independent of the system
context in which the software operates.
The “Safety Element out of Context”
approach is fundamentally inapplicable
for systems including complex software.

● Modern systems run so much software
that rigorous analysis of all functionality
and behaviours, while theoretically
possible, is not achievable in practice.

● Software and systems are evolving so
quickly that traditional safety
approaches can not keep up.

● The behaviour of modern
microprocessors, and many modern
algorithms (e.g. AI/ML), is not
deterministic in any case.

In spite of these problems, many
international-scale organisations have
achieved highly reliable and critical services
based on complex software, and we aim to
learn from approaches taken by other
disciplines.

© CODETHINK LIMITED 2021 2 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

Thesis
We propose the following reasoning about safety for software-intensive systems, starting from the
perspective of what we know about real software on real systems:

1. There is a requirement for safety-related promises about the behaviour of systems running
complex software on multi-core microprocessors, including pre-existing open source
software such as Linux.

2. When considering any typical modern system involving multi-core microprocessor and a
range of inputs and outputs (e.g. IoT Device, Edge Device, Connected Vehicle):

○ The system will include at least hundreds of thousands of lines of code, since just the
firmware bundled with modern processors is typically at that scale.

○ Counting also the software for OS and applications, typical systems have 10-100
million lines of code.

○ Most of the code (in a Linux-scale system, perhaps more than 99%) is not present to
deliver safety-relevant functionality.

○ Most of the code is present to provide either generic functionality (e.g. non safety
related communications, graphics, data processing) which may not even be activated
for the target system, or system-specific functionality that is not directly relevant to
the safety case.

○ Most of the code does not have associated design documentation or requirements
definitions that are specific to the expected use cases for the entire system.

3. When considering modern multi-core systems involving functionality or algorithms relying
on randomisation, probabilities or AI/ML models:

○ expected behaviour can not be considered deterministic, by definition
○ validation of behaviour can only be achieved up to a statistical measure of the

reliability of the result
○ any validation of behaviour must be considered in the context of the provided input

or training datasets.

4. Therefore the behaviour of complex software such as Linux running on multi-core
microprocessors is not deterministic. However, over many operations we may establish a
confidence level for the presence of specific required behaviours, or the absence of specific
misbehaviours

© CODETHINK LIMITED 2021 3 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

5. But software behaviour can be trivially and completely changed
○ by modifying one line of code; this is true no matter how complex the software, e.g.

■ insert exit() before any required behaviour.
■ insert not in any if statement.

○ by modifying other code outside the target software, e.g:
■ adjust the compiler to interpret specific instructions differently
■ adjust the boot loader to configure resources differently

○ by modifying the hardware running the software, e.g:
■ make resources unavailable
■ adjust clock speeds

6. In addition, modern system software evolves, changing many times over the lifetime of the
system. As a result, promises must be re-evaluated at every change.

7. From the above it follows that any promise may not be satisfied from time to time,
potentially as a result of software changes, hardware failures and/or environmental factors.

8. To minimise the impact of promises not being satisfied, we propose the following strategy:

○ Analyse the sources of disturbance which can lead to promises not being satisfied1

○ Demonstrate reliable construction of known versions of the software2

○ Provide stochastic tests to check that known versions of the software provide the
promised behaviour and do not provide misbehaviour.

○ Measure and analyse test results to establish confidence level
○ Construct alternate versions of the software with simple patches applied, which do

not provide the required behaviours, and demonstrate misbehaviours3

○ Use both normal and fault-injection software versions to test overall system
behaviours, both in normal running and under duress with promises broken

○ Provide guidelines, scripts and tests to support users/developers of the software
based on the results of the analysis and testing process

○ Maintain all of this in a continuous integration framework, with ongoing analysis and
the objective of improving confidence levels.

3 Fault Injection

2 By establishing binary, bit-for-bit reproducible builds and by avoiding unnecessary dependencies

1 Using Systems Theoretic Process Analysis (STPA)

© CODETHINK LIMITED 2021 4 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

2 Software safety: a
system-theoretic perspective

This section summarises our understanding of
safety topics, which has informed the
preceding thesis and the new approach to
software safety described in chapter 3.

Functional safety

Discussions about safety in the context of
software most commonly focus on functional
safety as it applies to electronic and
electro-mechanical systems. This is a set of
engineering practices that seek to reduce the
level of risk in a device or system to an
acceptable level, where the definition of
'acceptable' is determined by the nature of the
system, its intended purpose and the type of
risks that are involved.

As summarised4 by the International
Electrotechnical Commission (IEC):

"Functional safety identifies potentially
dangerous conditions that could result in
harm and automatically enables corrective
actions to avoid or reduce the impact of an
incident. It is part of the overall safety of a
system or device that depends on
automatic safeguards responding to a
hazardous event."

Functional safety engineering practices, and
internationally-recognised standards such as
IEC 61508 that formally describe them, focus

4 https://www.iec.ch/safety

on identifying the failures that lead to accidents
and other hazardous events, and specifying
how the system as a whole - and features
identified as 'safety functions' in particular - can
detect and respond to these, in order to avoid
or minimise harmful consequences.

One of these practices is hazard and risk
analysis, which is used to identify and examine
the conditions that can lead to harmful
outcomes (hazards), and to evaluate both the
probability of these conditions occurring and
the severity of the potential consequences
(risks). This kind of analysis will always be
informed by previous problems or accidents,
and the known limitations of hardware or
software components, but it also uses formal
techniques to try to identify new problems.

It's important to note that functional safety
practices are not expected to eliminate all
potential hazards, or to reduce the identified
risks to zero, but only to reduce those risks to
an acceptable level. A key role for the safety
standards is in qualifying what is meant by
acceptable in a given context, and describing
what can be considered sufficient when
evaluating how those risks have been
mitigated.

© CODETHINK LIMITED 2021 5 CC-BY-SA 4.0

https://www.iec.ch/safety

Safety of Software-Intensive Systems from First Principles

Safety objectives

To understand what this means, it is useful to
distinguish between four broad objectives in
safety, which safety practitioners can
characterise using the following questions:

1. What does ‘safe” mean, and how can this
desired state be achieved and
maintained?

2. How can the safety measures identified in
#1 be realised or implemented?

3. How can confidence be established that
the criteria in #1 and the measures in #2
are sufficient?

4. How can confidence be established that
the processes and tools that we use to
achieve #1, #2 and #3 are sufficient?

It is useful to make these distinctions when
reading about safety, because a proposition or
a technique that might apply to one of these
objectives will not necessarily be helpful when
applied to another.

Safety standards such as IEC 61508 and ISO
26262 are primarily concerned with objectives
#2, #3 and #4, but they also list techniques for
elaborating #1, and identify some general
criteria that are typically applied for this
objective. Standards for other domains, such as
those covering the manufacture of toys, for
example, may contain more concrete examples
of #1.

Standards such as ISO 26262 permit safety
practitioners to break down (decompose)

systems into components, and to examine the
distinct roles that software and hardware
components play in the safety of a system.
They also encourage practitioners to consider
the tools that are used to create or refine these
components, to examine how they contribute
to objectives #2 and #3, and to consider how
objective #4 applies to them.

Part of the motivation here is the desire to
have reusable components and tools, with
clearly-defined and widely-applicable
safety-relevant characteristics, which
practitioners can feel confident about using for
different contexts and systems. There is explicit
support for this at a system component level in
ISO 26262 (the functional safety standard for
road vehicles), in the form of the 'Safety
Element out of Context" (SEooC) concept.

© CODETHINK LIMITED 2021 6 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

System vs component

The "Safety is a system property" assertion is
associated with a school of thought that might
be labelled the 'system theoretic safety
perspective', which has been notably
articulated by Dr. Nancy Leveson, who
observed in Engineering a Safer World: Systems
Thinking Applied to Safety 5:

“Because safety is an emergent
property, it is not possible to take a
single system component, like a
software module or a single human
action, in isolation and assess its
safety. A component that is perfectly
safe in one system or in one
environment may not be when used
in another.”

This might at first seem to be incompatible with
a desire for reusable components. In our
opinion, however, this does not mean that
safety tasks can only be undertaken in
reference to a complete and specific system.
Rather, it asserts that it is impossible to
perform a complete safety analysis for a given
component without also considering the wider
context of that component.

Furthermore, this perspective applies primarily
to objective #1 (although it also has some
bearing on #3), which means that there are
some tools and techniques relating to safety

5

https://direct.mit.edu/books/book/2908/Engineering-a-Safer-W
orldSystems-Thinking-Applied

whose merits can be examined without explicit
reference to a system context.

When trying to define what is meant by safe,
and considering the completeness of that
definition, the system context cannot be
ignored. For a software component in particular,
this means answering the following questions:

● What system (or kind of system) is under
consideration?

● What is this system's intended purpose,
and how does the software contribute to
it?

● What environment (or kinds of
environment) is the system intended to
operate within, and how might this affect
the software component?

● What does 'safe' mean in the context of
this system, and how is the software
component relevant to achieving or
maintaining this desired state?

The system context under consideration might
be concrete and complete (e.g. a specific
integration of hardware and software as part of
a product), or partial (e.g. only describing how
the component interacts with the the rest of
the system) or an abstraction (e.g. a set of
assumptions and constraints for a given
category of system). Without defining a context,
it is not possible to make meaningful
statements about what may be considered
safe, and there is no way of evaluating the
completeness (i.e. whether it is sufficient) of the
analysis.

© CODETHINK LIMITED 2021 7 CC-BY-SA 4.0

https://direct.mit.edu/books/book/2908/Engineering-a-Safer-WorldSystems-Thinking-Applied
https://direct.mit.edu/books/book/2908/Engineering-a-Safer-WorldSystems-Thinking-Applied

Safety of Software-Intensive Systems from First Principles

Of course, it is possible to consider a given
piece of software in isolation, examining how
its properties might contribute to the safety of
a system, or represent a threat to its safe
operation. But without at least an implied
system context - and an understanding of what
'safe' means in that context - it is potentially
misleading to label the software, or its
properties, as 'safe'.

Hence, when safety is a necessary factor to
consider, attempts should always be made to
answer these questions, even if the answers
are unsatisfactory or provisional (e.g. "We have
not considered the impact of any
environmental factors on the operation of the
system"). If the context in which the software
will operate has not been considered or
described - or if reasoning is based upon an
assumed context that has not been described -
then gaps or flaws in that reasoning may go
unnoticed, with possibly dangerous
consequences.

Furthermore, when considering an abstract
context - a system context that is partial,
provisional, or conditional upon a set of
assumptions or requirements - then any claims
made about safety must be equally partial,
provisional or conditional. As a minimum, these
safety claims will need to be re-validated when
the software is used in a real-world product or
application (a concrete context), to ensure that
the stated conditions apply. To have confidence
in such claims, however, the analysis that
underpins these claims will also need to be

repeated or re-validated, to identify new
hazards, and to consider whether the risks
associated with existing hazards are altered by
the new context.

The value of performing a full safety process
for a component using such an abstract context,
as with an SEooC, is thus questionable.
Performing hazard and risk analysis in such a
context can certainly be valuable, by identifying
and characterising the hazards that may apply
for a defined class of systems, and develop
safety measures that can be used to mitigate
them. However, a safety practitioner cannot be
completely confident that either the analysis or
the measures are sufficient until they have been
considered for a concrete context. If a claim is
made that they are sufficient for the abstract
context, then there is a risk that the necessary
analysis and re-validation will be omitted when
they are used in a concrete context.

© CODETHINK LIMITED 2021 8 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

Failures and hazards

The importance of considering a wider system
context is only one aspect of the system
theoretic safety perspective. Equally important
is the observation that hazards, particularly in
complex systems, can manifest even when all
of the components in a system are performing
their specified function correctly.

Functional safety practices have tended to
focus on reducing the risk of a hazardous
outcome in the event of a failure, by which we
mean the manifestation of a fault: something
that prevents a component or system from
fulfilling its intended purpose. Commonly used
hazard and risk analysis techniques, such as
Failure Mode and Effect Analysis (FMEA) and
Fault Tree Analysis (FTA), involve systematically
examining the ways in which components can
fail in order to understand the effect of this on
the system. The probability of these failures
occurring is then calculated and used to
evaluate the associated risks of a hazard, which
are then used to identify where safety measures
- activities or technical solutions to detect,
prevent or respond to failures - are required.

When the root cause of such failures is known
(e.g. a hardware component with specified
physical limitations or need for periodic
maintenance), then this kind of analysis can be
an effective way to mitigate the consequences
of a failure, or to identify how the
consequences of a failure can cascade through
the system in a 'chain of events' to cause an

accident. This enables fault-tolerant systems to
be developed, enabling them to remain safe
even when one or more components fail.
However, this analytical approach has
acknowledged limitations when used in
isolation, and for identifying multi-factorial
systemic failures.

Part of the reason for this is the focus on
failures and the event-chain model. When
examining accidents from a different
perspective, it becomes apparent that
accidents can occur even in the absence of any
failure, due to unforeseen interactions between
components or environmental conditions
(external factors that affect the system state),
or a combination of factors that may involve
several components. Furthermore, these factors
may be external to the system or components as
specified, most notably when human
interaction contributes to a hazard.

To identify this kind of hazard, application of a
broader perspective is required, examining not
just how individual components or elements of
the system may fail, but how their interactions,
and the influence of external factors that can
affect their state (its environment), may
combine to cause undesirable outcomes.

© CODETHINK LIMITED 2021 9 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

At the simplest level, this perspective can be
applied by re-framing safety objective #1:

● What undesirable outcomes (losses) can
occur?

● What sets of conditions (hazards) can
lead to a loss?

● What criteria (constraints) must be
satisfied in order to avoid these hazards?

Having identified hazards in this way, safety
goals and requirements may then be described
in terms of the constraints that must apply to
the behaviour of the system in order to avoid or
minimise the impact of these hazards.

© CODETHINK LIMITED 2021 10 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

STPA

This is the approach taken by
System-Theoretic Process Analysis (STPA), a
hazard analysis technique based on a relatively
new accident model (STAMP:
Systems-Theoretic Accident Modeling and
Processes), which was developed by Dr. Nancy
Leveson of MIT in direct response to the
perceived limitations of existing event-chain
models. These include Failure Mode and Effects
Analysis (FMEA) and Fault Tree Analysis (FTA).

Comparisons of STPA and FMEA6, and of both
with FTA7, examining their relative ease of use
and effectiveness at identifying unique hazards,
found that they "deliver similar analysis results"
and have their own strengths and weaknesses;
a more recent paper8 explored the potential
benefits of combining STPA and FMEA to
address some of these weaknesses. However,
the merits of applying systems thinking when
applied to safety go beyond hazard analysis.

STPA's approach to modelling control
structures equips safety practitioners with an
analytical technique that is flexible enough to
include factors ranging from signals exchanged
between microprocessors to the impact of new
legislation on the organisation producing them.
While this can open up a breadth of analysis
that may seem counter-productive, when
applied correctly the method ensures the

8 https://www.mdpi.com/2076-3417/10/21/7400

7 https://arxiv.org/abs/1612.00330

6 https://link.springer.com/article/10.1007/s11219-017-9396-0

correct focus, by explicitly defining the scope of
analysis at the outset.

The most immediate application of this
technique is as a hazard and risk analysis
technique, but it also provides a framework for
developing reusable and extensible safety
requirements. These can be iteratively
developed and refined at different levels of
abstraction and examine different levels of the
control hierarchy as the system is developed.
The technique can also be applied at a much
earlier stage in the safety and development
lifecycles, and remains useful throughout. It
can also be used to analyse the processes
involved in these lifecycles, to identify how
measures intended to increase safety might
best mitigate risks introduced via these
processes (e.g. applying a security patch to a
piece of software).

STPA facilitates a progression from identifying
hazards, through defining constraints, to
validating design and verification measures,
and identifying the causes of an issue during
integration and testing. If used in this wider
mode, the technique has the potential to
deliver far greater benefits, complemented by
classic bottom-up hazard and risk analysis
techniques (where appropriate) rather than
replacing them.

© CODETHINK LIMITED 2021 11 CC-BY-SA 4.0

https://www.mdpi.com/2076-3417/10/21/7400
https://arxiv.org/abs/1612.00330
https://link.springer.com/article/10.1007/s11219-017-9396-0

Safety of Software-Intensive Systems from First Principles

Conclusions

Complex software is playing an ever-increasing
role in systems where safety is a critical
consideration, notably in vehicles that include
advanced driver-assistance systems (ADAS) and
in the development of autonomous driving
capabilities, but also in medical applications,
civil infrastructure and industrial automation.

When thinking about safety as it applies to
software, it is necessary to consider the system
and the wider context within which that
software is used. This is because hazards are
an emergent property of this system context:
they cannot be fully understood in the context
of the software component alone. Furthermore,
hazards do not only occur when a component
fails: they may result from unanticipated
interactions between components, or the
influence of external conditions (including
human interactions), even when all of the
components involved are working correctly.

This system-level perspective is often missing
from conventional functional safety practices
and the associated standards, because they
focus on hazards that arise from component
failures. ISO 26262, for example, defines
functional safety as "absence of unreasonable
risk due to hazards caused by malfunctioning
behaviour of E/E systems." The limitations of this
perspective are explicitly recognised in the
more recent ISO 214489, which notes that:

9 https://www.iso.org/obp/ui/#iso:std:iso:pas:21448:ed-1:v1:en

"For some systems, which rely on
sensing the internal or external
environment, there can be
potentially hazardous behaviour
caused by the intended functionality
or performance limitation of a
system that is free from faults
addressed in the ISO 26262 series."

However, while this standard is a step in the
right direction, and specifically mentions STPA
as a technique for identifying hazards that arise
from "usage of the system in a way not
intended by the manufacturer if the system", it
stops short of recommending this kind of
analysis as a matter of course for systems
involving complex software.

One explanation for this omission may be
found in the historical origins of functional
safety practices, which were largely developed
in the context of electro-mechanical systems
and relatively simple software components. In
the automotive industry in particular,
standardised functional safety practices are
also explicitly built around components,
reflecting the way that responsibility for safety
is distributed throughout a vehicle
manufacturer's supply chain.

Breaking down systems into discrete
components is a familiar and necessary
strategy in systems engineering, allowing
different developers to work more efficiently,
and promoting specialisation and re-use.
However, because safety must be understood

© CODETHINK LIMITED 2021 12 CC-BY-SA 4.0

https://www.iso.org/obp/ui/#iso:std:iso:pas:21448:ed-1:v1:en

Safety of Software-Intensive Systems from First Principles

at a system level, it can be counter-productive
to evaluate a component in isolation and then
label it as 'safe', even for a tightly-specified use.
This can lead to missed hazards, but it also
means that the majority of safety engineering
effort is expended on defining and validating a
component in isolation, instead of examining
its role in a wider, more concrete context.

As an alternative, top-down analytical
techniques such as STPA can be used to
identify and characterise hazards at both a
system and a component level, and to analyse
the processes used to develop them. Safety
requirements are then derived from this
analysis in the form of constraints, which can be
iteratively developed at various levels of
abstraction, or levels of a system-component
hierarchy. By providing a common language to
inform safety activities at all levels, these
constraints can then be used to validate
component behaviour and safety measures
across the system, not only at the level of the
component, or in an abstract system context.

In our opinion, this approach is not
incompatible with the bottom-up,
failure-focussed techniques that are prevalent
in functional safety practices. Rather, by
providing a way to reframe and refocus safety
engineering efforts at the system level, it may
ensure that those efforts are more effective at
identifying and mitigating the hazards that slip
through existing nets.

© CODETHINK LIMITED 2021 13 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

3 A new approach to software
safety

In order to make safety-related promises about
the behaviour of systems running complex
software on multi-core microprocessors,
including pre-existing open source software
such as Linux, we believe that a new approach
to software safety will be required, which:

● Can be applied to a huge body of
pre-existing code, within a justifiable cost
and time frame

● Can handle a very high rate of ongoing
development and integration change

● Recognises the unique characteristics of
modern software components in
comparison with other system elements

The activities described below are expected to
form part of an iterative process for a given
system, with each iteration refining the
system's specification and associated safety
analysis, and the measures required to verify
and validate it.

Define OS responsibilities

The first challenge is to specify, with sufficient
clarity, what Linux needs to do as part of a
system, and how these responsibilities are
relevant to the safety-critical elements of that
system.

For a general-purpose operating system
component like the Linux kernel, which has

evolved to support a very wide variety of
hardware and applications, the potential scope
of its responsibilities may be very large.
However, not all of this functionality will
necessarily be related to the system's
safety-critical applications; depending on the
nature of the responsibilities, it may be
possible to limit the specification to a subset.

This task may still be non-trivial, however,
because Linux, in common with most free and
open source software (FOSS), lacks a formal
specification of its design and the goals that
inform it. A wealth of technical information is
available, and anyone is free to examine its
source code in order to understand more, or
read kernel developer mailing lists to
understand the decisions behind changes.
However, the Linux development process does
not include the formal documentation of
requirements, architecture and design.

In part, this reflects the nature of Linux: it does
not have a specific and formally circumscribed
purpose, but is instead iteratively adapted,
refined and extended to address an
ever-expanding set of purposes and
applications, by anyone who is willing to
contribute. Linux is extremely configurable by
design, which means that one system
deployment including Linux may differ radically
from another, even if they both share a
common hardware platform.

In this first stage, therefore, it is essential to
document both the specific system context in

© CODETHINK LIMITED 2021 14 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

which we intend to use Linux, and the subset of
functionality that it must provide in that
context.

Define system context

The system context for the OS must
encompass all of the components that will,
together with the Linux kernel, provide the
operating system services. It must also include
the kernel configuration used to construct the
kernel, as this will determine which features
are available, and how they behave. It must
also include the system hardware components,
most notably the CPU architecture and any
components that will be used by the system's
safety application(s).

Define OS functions

The next step is to define the functions that the
OS (including Linux) will provide in this system
context. It may be possible to limit this to a
subset of the complete functionality provided
by the OS, by focussing on the services that it
provides to safety-critical applications as part
of the system. However, the wider scope of OS
functionality should also be defined if
applications without a safety-related function
are expected to run in parallel on the system,
as it is necessary to consider how that
functionality might impact the safety
application(s)

Define control structure

The components of the system that are
involved in these functions are then specified in
control structure diagrams, which describe the
system as a hierarchy of control feedback
loops. The OS, and the components that it
interacts with are controllers in this hierarchy,
and their interactions are represented as
control actions (down arrows) and feedback (up
arrows). Controllers may represent hardware
or software components, and may be an
abstraction of multiple components or
categories of components.

Example control structure diagram examining
shared memory

Define safety requirements

© CODETHINK LIMITED 2021 15 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

The next challenge is to specify a set of detailed
safety requirements for the OS, using STPA to
perform a top-down hazard analysis of the
system defined in the previous activity. For
more information on STPA, see the preceding
section and the STPA Handbook10

Define system-level losses and hazards

A critical first part of this analysis is to identify
and understand hazards in the context of the
wider system. How might failures or
unintended behaviour of the system as a whole
lead to losses? As discussed in the previous
section, a component's responsibilities with
regard to safety cannot be understood without
examining its role for a particular system,
because the losses to be prevented, and the
hazards that may lead to them, will be specific
to that system.

This stage also includes identification of
system-level constraints, which are system
conditions or behaviours that need to be
satisfied to prevent hazards; they may also
define how to minimise losses if hazards do
occur. These are defined at the level of the
overall system incorporating the OS, not the OS
itself.

Identify potential hazards involving the OS

Hazard analysis is performed using the control
structure diagrams created in the previous

10

https://psas.scripts.mit.edu/home/get_file.php?name=ST
PA_handbook.pdf

stage, as part of our definition of the system
and the specific responsibilities of the OS.

The system conditions that can lead to
system-level hazards may be specific to the OS
(e.g. handling of hardware failures), but may
also relate to the behaviour of other system
components (e.g. a safety application's
handling of failures reported by the OS). These
causes, which STPA calls unsafe control actions
(UCAs), are identified by examining how
interactions involving the OS may lead to the
system-level hazards identified in the previous
step. Further analysis of these produces loss
scenarios, which describes the causal factors
that can lead to the UCAs and the associated
hazards.

This analysis should focus on the overall
responsibilities of the OS and its interactions
with other components at its boundaries (i.e.
via kernel syscall interface or equivalent), not
the internal logic of the OS. It may be necessary
to examine some of that internal logic in order
to form an understanding of the behaviour, but
it is assumed that these internal details will not
need to be referenced in UCAs in most cases.

Specify constraints required to prevent
these hazards

Constraints are specific, unambiguous and
verifiable criteria that are applied to the
behaviour of either the system as a whole, or of
a specific controller in the control system
hierarchy, in order to prevent a hazard.

© CODETHINK LIMITED 2021 16 CC-BY-SA 4.0

https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf

Safety of Software-Intensive Systems from First Principles

Controller constraints are derived directly from
the UCAs and loss scenarios identified in the
previous step.

Constraints may be implemented in many
ways: design features of the OS, external safety
mechanisms such as a hardware watchdog,
offline verification measures applied during
development or software integration (e.g. tests,
static analysis rules) or online verification
measures implemented by another software
component (e.g. a monitoring process).

Note that these constraints are not confined to
the OS. Some may already be fulfilled by
aspects of the OS design; others may require
the addition of a new feature as part of the OS,
or an external safety mechanism. However,
many may need to be applied as requirements
on the development processes or design of
safety applications, such as static analysis rules
that must be applied when verifying application
code, or system-level testing that must be
performed to validate an application's use of
the OS, or the behaviour of the hardware.

Historical and regression testing

To ensure that the OS provides the expected
behaviour required by safety applications
requires development of a set of tests. It may
be possible to re-use or adapt existing tests
developed for Linux for some of these.

Tests should be system-level wherever
possible, using the external interfaces of the

OS, as this is the most efficient way to verify
behaviour on an ongoing basis, and ensures
the long term relevance of tests. Because of the
nature of Linux, the stability of internal
component logic cannot be guaranteed, but
the kernel development community has an
explicit 'golden rule' ("Don't break userspace!")
that should guarantee the stability of its
external interfaces and associated behaviour.

Some functionality may require different or
additional verification strategies, where a
constraint cannot be verified at OS system
level, but these should be the exception. An
example might be a static analysis rule to check
that kernel access to user memory follows the
correct protocol. For more information, read
about our earlier investigation11 into this area.

Regression testing

Since the OS components will explicitly change
over the lifetime of the system, regression tests
are used to verify that current OS components
satisfy the safety requirements. These will
correspond directly to OS design constraints
identified during hazard analysis: they exercise
potentially unsafe behaviours and verify that
the required behaviour is exhibited. Statistical
measurement of test results (negative fault,
negative detect) will be used to provide
evidence to support a safety case; where tests
fail, additional impact analysis will be required.

11

https://www.codethink.co.uk/articles/2020/investigating-
kernel-user-space-access/

© CODETHINK LIMITED 2021 17 CC-BY-SA 4.0

https://www.codethink.co.uk/articles/2020/investigating-kernel-user-space-access/
https://www.codethink.co.uk/articles/2020/investigating-kernel-user-space-access/

Safety of Software-Intensive Systems from First Principles

Historical testing

Because there is no formal functional
specification for the OS, evidence that the
expected behaviour has been present and
stable over time must be constructed by
repeating regression tests using historical
versions of OS components (e.g. last 1000
released Linux kernel versions). Test failures
will be investigated to help refine existing tests
and analysis. These may reveal hazards that
were not identified in original analysis, or
provide examples to inform fault injection and
stress testing (see below).

Statistical analysis and models

Statistical models provide increased confidence
in tests, or establish a level of confidence in
test coverage when complete certainty is not
feasible. Examples include:

● Identifying a representative set of tests,
where a comprehensive set is not
possible or practical

● Using a stochastic model to show that
non-deterministic behaviour falls within
expected bounds

● Measurement of test results (negative
fault, negative detect) and other test
characteristics (e.g. execution time), to
identify patterns and anomalies

Example of statistical analysis of historical test
data

Confidence in test results can be increased by
examining them from a different angle, and
challenging assumptions in order to avoid false
confidence. Simple pass/fail results may
conceal an unidentified issue or hazard;
examining other characteristics of tests, such
as the execution time or CPU load, may help to
reveal these, or to identify flaws in tests or test
infrastructure that are distorting or concealing
results.

Fault injection and stress testing

Simply confirming the expected functionality is
not sufficient, however: in order to have
confidence in the safety of a system, the test
suite must validate system behaviour when
things go wrong, or behaviour deviates from
the expected path.

Fault injection

This is tested using fault injection strategies,
constructing alternate versions of the software
that deliberately violates the expected
behaviour. The intention here is to provoke or

© CODETHINK LIMITED 2021 18 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

simulate the hazards identified during analysis,
in order to validate the safety measures
developed to mitigate these hazards (e.g.
confirm the effectiveness of tests). These are
false positive checks: faults are introduced to
validate they are detected or mitigated; faults
are cleared to confirm they are no longer
reported.

This strategy is intended for use with a
complete system, not only for testing the OS in
isolation. It can be used to validate safety
mechanisms provided by external components,
verify the handling of OS-related faults and
other hazards by safety applications, and
facilitate the validation of overall system safety
measures in the final product.

Where possible, fault injection should be
accomplished by simple code changes to
software as deployed (e.g. kernel patches
applied during construction); this means that
the OS can be used in system testing without
special preparation. Where appropriate, faults
may also be injected via a test process (e.g.
simulating interference by a ‘rogue’ process). In
some cases, faults may need to be injected
using custom kernel modules, and triggered via
an ioctl interface, either randomly or via a
test fixture. This approach should be the
exception, but may be necessary for
fundamental functionality, where a simple
change would prevent system initialization.

OS fault-injection should be included as a
matter of course in system-level smoke tests,

perhaps by periodically using an OS image with
arbitrarily selected fault(s). This serves to
validate OS functional tests and uncover gaps
in application or other system components.

Stress testing

Safety functionality may also be compromised
by system load or interference from other
applications running in parallel, using existing
tools such as stress-ng12 and targeted tests to
simulate system conditions and/or interference
from other processes. These tests will need to
be tailored for a given system, as the nature
and scope of other applications (both safety
and non-safety) on a system will vary, but it
should be feasible to define a generic set of
tests, which can be extended and refined for
specific systems.

Hazard analysis will help to inform these tests,
by identifying specific system conditions or
sources of interference. Results from historical
testing and statistical analysis may also suggest
further tests.

12 https://wiki.ubuntu.com/Kernel/Reference/stress-ng

© CODETHINK LIMITED 2021 19 CC-BY-SA 4.0

https://wiki.ubuntu.com/Kernel/Reference/stress-ng

Safety of Software-Intensive Systems from First Principles

Deterministic construction

Construction is the foundation for the key
engineering processes that underpin all of this
analysis, verification and validation. This
includes the tools, processes and inputs used
to build and verify the system, the build and
test environments in which these processes are
executed, and the configuration and change
management of these resources.

Relevance for safety

Predictable characteristics from construction
support verification and impact analysis. Binary
reproducibility of system artifacts and
toolchain components enables cross-validation
of these elements. A previously-validated
system binary, which was output by the
toolchain, can verify a new revision of that
toolchain. If a system binary changes when no
source, tool or configuration has been
changed, this may indicate an uncontrolled
configuration file or cached dependency.
Binary reproducibility also permits verification
and analysis of the impact of changes to the
OS: if we compare output binaries with a
previous version, and a source change has no
effect on the output binary, then tests do not
need to be repeated. See Toolchain
reproducibility and Production target
reproducibility below for more information.

A deterministic construction process enables
impact analysis with very fine granularity. Using
declarative construction definitions means that

we have complete control over how
components are constructed, and which inputs
are used. This includes construction and
verification tools and build dependencies as
well as the system component source code. All
of these inputs are managed in git repositories
under direct change control; where these
originate from 'upstream' open source
projects, these repositories must be mirrored
on infrastructure under local control, to ensure
continuity of access and detection of
anomalous changes.

An automated CI/CD process built on this
foundation orchestrates safety analysis
processes and the evidence required to
support a safety case. This includes
provenance for all inputs and evidence of
impact analysis for changes, traceability from
requirement to test to test results, and
configuration management aligned around the
CI/CD process. See Controlled Process below for
more information.

Controlled Process

Processes and techniques for a controlled
CI/CD process based around construction were
originally devised by Codethink engineers as
part of the Baserock open source project,
which began in 2011. The approach has
evolved since that time as we have applied it on
a range of client projects and public-facing
initiatives. The core ideas are:

© CODETHINK LIMITED 2021 20 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

● All production software is constructed
via a CI/CD framework (e.g. GitLab CI)

● There is no alternative path to deliver
software into production, so for example
it is not possible for a developer to
create a special version by hand.

● All input software code is captured in a
SCM (e.g. Git) as source code, or input
binaries if source code is not provided by
the supplier.

● Input source code from upstream
projects is mirrored into a local SCM via
an automated process which blocks any
attempt to re-write history of release
branches.

● All configuration and build instructions
describing how to construct the
production software are also captured in
SCM.

● The toolchain which is used to construct
production software is itself constructed
from captured source/binaries and
configuration/build instructions, via the
CI/CD framework.

● The toolchain is bootstrapped so as to
be independent of any/all tools or
libraries present on the host machines
where the toolchain is executed

● The toolchain is constructed so that it is
fully reproducible, i.e. when executing
construction of a specific version of the
toolchain multiple times via the CI/CD
framework, exactly the same binary
output is expected, bit-for-bit.

● The toolchain is constructed so that it
generates fully reproducible outputs for
inputs which support the property of
reproducibility.

● Fully reproducible builds provide a viable
mechanism of reconfirming that
updated versions of the toolchain and
surrounding framework continue to
behave correctly with previous inputs.

● If a newly upgraded setup of the
framework and toolchain generates
exactly the same binaries as previous
versions (for a comprehensive set of
inputs), there is a strong basis for
confidence that the new setup is
functioning as expected.

● The framework is used to construct all
components of the production software,
including any additional tools and
dependencies (e.g. Unix utilities, Python)
required to achieve the final output
binary files.

Toolchain reproducibility

A fully bootstrapped, sandboxed, reproducible
construction toolchain allows the following:

● For a given version of the toolchain
source code, the resulting toolchain is a
specific fileset which is uniquely
identified by hashing or checksumming.

● These filesets may be compared to a
high degree of confidence by comparing
hashes and checksums. To be
completely certain about the

© CODETHINK LIMITED 2021 21 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

equivalence or differences between two
filesets, one can do a bit-for-bit
comparison or binary diff.

● Repeating construction of the toolchain
generates exactly the same fileset when
repeated on multiple computers,
establishes confidence that the build
process is isolated from all
environmental factors and
dependencies, and the toolchain is not
reliant on any host specific tools or
libraries. This avoids the "special server"
problem where a project relies on a
specific dedicated build machine, which
becomes a single point of failure and
risky to update.

● Under the same circumstances, any
difference in the fileset indicates that
there is indeterminate behaviour in
construction of the toolchain, which
requires investigation.

We assert that:

● All of the toolchain components should
be reproducible by default.

● Any non-reproducible component to be
introduced into the toolchain should be
made reproducible before adoption.

● Any change which breaks reproducibility
should be rejected.

Production target reproducibility

Fully reproducible builds of production target
software allows the following:

● For a given version of all input source
code and all the tools involved in
construction, the resulting output is a
specific fileset which is uniquely
identified by hashing or checksumming.

● These filesets may be compared to a
high degree of confidence by comparing
hashes and checksums. To be
completely certain about the
equivalence or differences between two
filesets, we can do a bit-for-bit
comparison or "binary diff".

● When upgrading any or all of the
construction tools, the generation of
exactly the same fileset from that same
input source code indicates confidence
that the construction functionality of the
upgraded tools is unchanged for this
specific target and that there is no need
to retest or revalidate the fileset as a
result of the tools upgrade.

● Under the same circumstances, any
difference in the fileset indicates that the
upgraded tools function differently for
this specific target and there is a need to
retest and revalidate.

● When generating a new fileset,
examination of the actual differences in
binaries compared to a previous fileset
may help in considering whether the
differences are correct..

As an example, consider the introduction of an
upgraded compiler which handles edge cases
such as "dangling else" differently. If the binary

© CODETHINK LIMITED 2021 22 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

output is unchanged, it indicates that our
target is not affected by the "dangling else"
change. Differences in output demonstrate that
the target is affected by the changed compiler
behaviour, requiring impact analysis.

Similarly, changes which relate to architectures
other than that used for the target system, or
unused language facilities, will not affect the
fileset results.

Note that:

● Using the reproducibility property makes
it easy to verify which tools affect the
output fileset, and which do not

● SCM tools (e.g. git-bisect) can establish
which specific changes in a new tool
release actually affect the target.

We assert that:

● All production target software should be
made reproducible by default

● Any non-reproducible component to be
introduced into the target should be
made reproducible before adoption

● Any change which breaks reproducibility
should be rejected

Key assumptions

There are some key assumptions made in this
proposed approach, which can only be
validated by applying it to real examples:

● The majority of testing must be
performed at the OS boundary.
Specifying and verifying the functionality
at a lower level would be impractical,
due to its scale and complexity, and the
continued evolution of the kernel by the
Linux community, without a formal
specification to direct it, makes this
infeasible.

● The hazard analysis that is used to derive
safety requirements must also be
focussed at this level, for the same
reasons.

● The proposed testing and fault injection
strategies need to provide sufficient
evidence of safety integrity, in lieu of the
formal specification material that is
conventionally required by safety
standards.

© CODETHINK LIMITED 2021 23 CC-BY-SA 4.0

Safety of Software-Intensive Systems from First Principles

4 Glossary

The following definitions, many of them
borrowed directly from the STPA Handbook13,
clarify the meaning of some terms used in this
white paper, which are highlighted in italics in
chapter 2.

abstract context: A system context that is
partial, provisional or conditional, where
missing or unspecified aspects of the context
are described using assumptions or
requirements. This may be contrasted with a
concrete context.

component: A discrete element or part of a
system, or systems. A component in one frame
of reference may be considered a system in
another.

concrete context: A system context that
corresponds to a real-world system (e.g. a
product) with specified components and
environment. This may be contrasted with an
abstract context.

constraints: Unambiguous criteria pertaining
to the operation of a system. Constraints are
described using “must” or “must not” rather
than “shall"; a distinction is made between
requirements (system goals or mission) and
constraints on how those goals can be
achieved.

13

https://psas.scripts.mit.edu/home/get_file.php?name=ST
PA_handbook.pdf

environment: An aspect of the system context,
which may include any external factor that may
have an effect upon it. Depending on the
nature and boundaries of the system, this might
be anything that is external to it: an aspect of
the physical world (e.g. weather) for a sensor,
or the CPU hardware for an operating system.

failure: The manifestation of a fault: something
that prevents a component or system from
fulfilling its intended purpose.

hazard: A system state or set of conditions that,
together with a particular set of environmental
conditions, will lead to a loss.

loss: An undesirable outcome associated with
the operation of a system, involving something
of value to its stakeholders (users, producers,
customers, operators, etc).

process: A formalised set of practices that are
undertaken as part of a development lifecycle.

risk: Describes the probability of an
undesirable outcome (one that may lead to a
loss) and the severity of the consequences.

safety measure: An activity or technical
solution that is intended to prevent a hazard,
reduce the probability of the associated risk, or
minimise the severity of the consequences.

SEooC: Safety Element out of Context. In the
ISO 26262 standard, this term is used to
describe a component that is subjected to a
safety certification process for an abstract

© CODETHINK LIMITED 2021 24 CC-BY-SA 4.0

https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf

Safety of Software-Intensive Systems from First Principles

context. See the ISO 26262 definition14 for more
information.

sufficient: What is considered acceptable for a
given domain or category of systems when
considering what safety measures need to be
undertaken to identify or mitigate risks, and
what criteria these need to satisfy.

system: A set of components that act together
as a whole to achieve some common goal,
objective, or end. A system may contain
subsystems and may also be part of a larger
system. It may have both hardware and
software components, and/or involve human
interactions.

system context: A defined scope of analysis,
which encompasses a system (or component), its
intended purpose and the factors (including its
environment) that may have a bearing upon
that purpose. Some of these factors may be
implied by the identified purpose (e.g. a car
driven on public highways is subject to weather
and traffic regulations).

tool: A software or hardware solution that is
used as part of the development process for a
system or component. If a tool is responsible for
providing a safety measure (e.g. constructing or
verifying a component), then it has a bearing
on safety, even though it does not form part of
the resultant system or component.

14

https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:
en

© CODETHINK LIMITED 2021 25 CC-BY-SA 4.0

https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en

Safety of Software-Intensive Systems from First Principles

About Codethink

Codethink provides advanced technical consultancy and software engineering services to support
international-scale organisations in a range of critical industries including Automotive, Medical
Devices and FinTech. We collaborate in the open on a range of initiatives to advance the
state-of-the-art for software engineering, including the CIP and ELISA projects which aim to
improve the reliability and safety of open source infrastructure. If you would like to know more
about our services please get in touch via safety@codethink.co.uk

www.codethink.co.uk

Follow us on Linkedin and Twitter

© CODETHINK LIMITED 2021 26 CC-BY-SA 4.0

mailto:safety@codethink.co.uk
http://www.codethink.co.uk
https://www.linkedin.com/company/codethink-limited
https://twitter.com/codethink

