
exida Automotive Symposium 2022

October 13-14, 2022
Daniel Silverstone (Codethink Ltd.)

Jonathan Moore (exida LLC.)

Session 0X: Title: Is Rust ready for safety related applications?



About the Presenter - Jonathan

2022-10-13 2Copyright © exida.com 2000-2022

Over 20 Years of automotive and robotics experience in systems engineering, failure mode 
avoidance and standards-based software development

Focused on supporting new and existing customers with their implementation of functional 
safety standards

Bachelor of Electrical and Electronic Systems Engineering from University of York and a Master 
of Science Electromagnetic Compatibility from University of York

Member of US and International Committee ISO 26262 2 Ed
–Part 6 Software

Sorry I can’t be here with you all today. Director Advanced Systems

 jmoore@exida.com

+1 435 754 6280

mailto:jmoore@exida.com


About the Presenter - Daniel

2022-10-13 3Copyright © exida.com 2000-2022

Daniel Silverstone
Mail: daniel.silverstone@codethink.co.uk

2011 : Codethink Ltd
2006 : Simtec Electronics
2004 : Canonical Ltd

Projects / Special Interest
• Tooling and testing
• Requirements Engineering
• Systems Engineering
• Software Build and Integration
• Developer enablement
• Member of the Rust community



Abstract

Can you afford to ignore Rust?

How hard will it be to use in Safety projects?

Let’s take a look at what Rust offers, and what difficulties you need 
to be aware of.

2022-10-13 4Copyright © exida.com 2000-2022



What do we do with C today

What resources do we have to help with C?
• exida ctools - https://github.com/exida/ctools
• JSF / MISRA C rules - https://www.stroustrup.com/JSF-AV-rules.pdf
• MISRA Exemplar https://github.com/jubnzv/MISRA-Example-Suite
• AUTOSAR rules 

https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14G
uidelines.pdf

What is the general suitability of the C language for safety?
• Suitable programming language to solve the problems in the Automotive space
• Coding guidelines
• Language subset
• Static analysis

What else do we do?
• All wrapped by architecture guidelines
• Application specific meta-programming language which generates nominally “good” C

5



Background to Rust

• Brief history
• Status of the language ecosystem
• Rate of change
• Standardization and adoption
• Target (e.g. device) support
• Linux kernel support
• Documentation
• Language specifications
• Contributing to the ecosystem and getting support
• Governance and community

6



Core Rust

● Core processes
● Discoverability
● Documentation
● Version Control

● Package management and build tooling
● Test frameworks

7



What makes Rust special

Language
• Panics
• Canaries
• Borrow checker
• Lifetime

Tooling
• Clippy
• Run-time protections
• More helpful messages

8



What do beginners struggle with

• How does Rust work
• What is it
• Why come to Rust
• Wrapping, c2rust
• Tool support

– Who has them, licences and safety status

9



What else is hard in Rust

● Compile time canaries are more valuable than runtime canaries, 
but they come with a cost

● Not everything written will work
● Linting tool says avoid valid rust (called clippy)
● Run-time canaries - control panics
● No amount of compiler and lint help can prevent semantic errors

10



Coexistence with other code (C)

• The Linux kernel now allows Rust, how does it coexist?
• What is safe, unsafe
• How do they live together
• unsafe keyword
• FFI and C
• Tooling to assist with all this.

11



Testing in Rust

● Built in testing mechanisms
○ Unit testing within codebases
○ Integration testing around codebases
○ Code documentation as tests

● Libraries to assist with further testing
○ Mocking
○ Benchmarking
○ Fuzzing

● Tooling to assist even further
○ MIRI
○ Tarpaulin

● Testing the tooling
– For tool confidence exida recommend that tool users repeat for their use cases 

the same validation tests performed by the tool vendor
• …

12



C2Rust conversion

• What is this tool
• How to set up
• Can we trust it
• What does it actually do

Repository - https://github.com/immunant/c2rust
Demo - https://c2rust.com/ 

13

https://github.com/immunant/c2rust
https://c2rust.com/


Tool support

• Community-provided tooling
• Licences
• Ferrocene: Rust for Critical Systems

– https://ferrous-systems.com/ferrocene/ 
• Trusting openly provided tooling

14

https://ferrous-systems.com/ferrocene/


Comparing ctools checks to stock Rust

15



ISO26262 Part six and Rust

16

Table 1 - Coding Table 3 - Design Principles Table 6 - Design Table 7 - Unit testing

1a clippy 1a gets-out-of-way 1a needs tooling 1a human

1b unnecessary 1b human 1b semi-built-in 1b human

1c built-in 1c human 1c built-in 1c human

1d semi-built-in 1d semi-built-in 1d clippy 1d human

1e human 1e human 1e built-in 1e human

1f irrelevant 1f human 1f built-in 1f needs-tooling

1g semi-built-in 1g human 1g semi-built-in 1g needs-tooling (some done)

1h semi-built-in 1h system property 1h human 1h clippy but also MIRI

1i built-in 1i system property / semi-built-in 1i semi-built-in 1i clippy but also MIRI

1j 3rd-party-tooling 1j supported human

1k supported human

1l supported human

1m needs-tooling

1n irrelevant



Is there an argument to use Rust

● What argument can we make for using Rust in Safety 
Applications?

17



Is there an argument for not using Rust

Is it sufficiently ready for you?
• Only AutoSAR MCAL available for my target or my library is not in Rust 

and a wrapper not appropriate
• My target not supported by Rust yet
• Rust’s tier 3 target support is not good enough
• Particular library and/or wrapper needs
• What do you get / don’t you get

● What do you need
● Will you contribute - be originator of that support
● Cost of converting library or wrapping Rust - more or less risk than 

continuing to use C
● What is your argument for using C? 18



Selected References

Programming Rust, Fast Safe Systems Development Blandy, Orendorff & Tindall O’Reilly 2nd Ed June 2021
https://www.oreilly.com/library/view/programming-rust-2nd/9781492052586/
https://ferrous-systems.com/ferrocene/
https://www.rust-lang.org/
exida ctools https://github.com/exida/ctools
JSF / MISRA C rules - https://www.stroustrup.com/JSF-AV-rules.pdf
MISRA Exemplar https://github.com/jubnzv/MISRA-Example-Suite
AUTOSAR rules 
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
MISRA https://www.misra.org.uk/
Software metrics https://www.exida.com/Blog/software-metrics-iso-26262-iec-61508
Codethink https://www.codethink.co.uk/
Exida www.exida.com https://www.exida-eu.com/

Speak with us if you’d like to see any code from the ctools analysis

19

https://www.oreilly.com/library/view/programming-rust-2nd/9781492052586/
https://ferrous-systems.com/ferrocene/
https://www.rust-lang.org/
https://github.com/exida/ctools
https://www.stroustrup.com/JSF-AV-rules.pdf
https://github.com/jubnzv/MISRA-Example-Suite
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.misra.org.uk/
https://www.exida.com/Blog/software-metrics-iso-26262-iec-61508
https://www.codethink.co.uk/
http://www.exida.com
https://www.exida-eu.com/


Many Thanks for Your Attention
Daniel.Silverstone@codethink.co.uk

JMoore@exida.com

excellence in dependable automation

2022-10-13 Copyright © exida.com 2000-2022 20


