
The
Codethink
Way

Codethink 2017

www.codethink.co.uk
sales@codethink.co.uk

+44 161 660 9930

Whitepaper

© CODETHINK 2014–2017 All rights reserved

Codethink The Codethink Way

Projects are delivered late, or with
features missing

1

2
Fixing security vulnerabilities takes too long,
or proves to be impossible

Productivity and reliability for embedded
systems software development projects is
too low. As a result, technology industries
are failing to deliver new software for new
and existing devices fast enough:

Executive Summary

– Custom electronics

– Custom system software

– Embedded software

– Proprietary and open source operating systems

– Proprietary software development processes

– Open source software development processes

The lead engineers at Codethink have contributed
extensively to widely-used FOSS community
projects including Linux, as well as designing and
developing custom proprietary IP on many hundreds
of complex projects over several decades. As
a result our core expertise spans a huge range
of computer architectures, operating systems,
programming languages and tools.

Codethink’s solution combines workflow and tools
for engineering teams to specify, design, develop
and maintain software for large populations of
complex system devices

– From data center servers to wearables

– From medical devices to aircraft

– From industrial equipment to cars.

We see an opportunity to establish thought-leader
positioning and fill space vacated by Wind River,
and others.

To that end, this document outlines our thinking
about the problem, the environment we are in,
our company and our approach to solving the
problem so far, and the future.

This gap creates an economic imperative for major
organisations to exploit Free and Open Source
Software (FOSS) solutions. However engineering
understanding and competence level is so low that
projects still run late or fail, even with free access to
billions of dollars worth of proven software.

Codethink is uniquely placed to understand the
systemic problems involved in the use of FOSS for
custom embedded systems, which requires a deep
understanding across all of the following areas:

1 Free and open-source software (FOSS) is computer software that can be classified as both free software and open source software.That is, anyone is freely licensed to use,
copy, study, and change the software in any way, and the source code is openly shared so that people are encouraged to voluntarily improve the design of the software. This is in
contrast to proprietary software, where the software is under restrictive copyright and the source code is usually hidden from the users.

http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Open_source_software
http://en.wikipedia.org/wiki/Free_software_licence
http://en.wikipedia.org/wiki/Proprietary_software
http://en.wikipedia.org/wiki/Copyright

Codethink The Codethink Way

The Problem

As the performance and capabilities
of computer-based electronic devices
increase, so does the scale and complexity
of the software required to run them.
Technology industries are failing to keep pace with
this inexorable growth in demand, because their
current understanding, tools and processes for
system-level software production are inadequate.

The key implications of this are that:

– �Organisations try to save money by using
low-cost resources - cheap people

– �Organisations try to cut corners by reusing
existing or ‘free’ software

– �Projects overrun on cost, time or both

– �Worst case projects fail completely

– �Delivered software is incomplete, inadequately
tested, unreliable, insecure, unsafe

– �Worst case failures cause financial losses,
injuries, fatalities, environmental damage

Complexity, Connectivity
and Chaos.
Most industries already depend on software-
intensive systems:

– �Banks and retailers are online;

– �Factories, industrial plants and power
stations are automated; and

– �Logistics and transportation networks
are tracked 24/7.

Planes, trains, automobiles, satellites and missiles
are designed, manufactured, tested and ultimately
piloted using complex software systems.

And our dependence on software in electronic
devices will clearly increase - as shown by the
hype around ‘Cloud Computing’, ‘Internet of Things’,
‘Machine to Machine’, ‘eHealth’, ‘Home Automation’,
‘Intelligent Buildings’, ‘Connected Car’ to name a few.

This will happen across all sectors where electronic
technologies are widely used including science,
education, telecoms, petrochems, transportation,
automotive, defence, aerospace, media,
entertainment, medical, finance, government.

As Carl Sagan said:

“We have also arranged things so that almost no
one understands science and technology. This is
a prescription for disaster. We might get away with
it for a while, but sooner or later this combustible
mixture of ignorance and power is going to blow
up in our faces.”

So too with these complex software systems.
We are building ever more complex systems that
our engineering community is hard-pressed to
understand, let alone the executives and regulators
charged with developing and executing business
strategies.

Complexity
Over recent years there has been a dramatic
increase in the complexity and capabilities required
from electronic devices, leading to the need for
much more comprehensive software solutions -
hence much more code.

A clear example of this is the automotive sector; up to
2010 most of the software was small-scale controller
code for Engine Control Units (ECUs) - each separate
controller had perhaps a few tens of thousand Lines
of Code (LOC). But with the introduction of In-Vehicle
Infotainment and provision of applications and
connectivity services, typical vehicles in development
today already carry more than one hundred million
LOC when they hit the market.

Codethink The Codethink Way
M

ill
io

ns
 o

f l
in

es
 o

f c
od

e

Model Year

0
1978 1986 1994 2002 2010

15

30

45

60

Growth of codebase
in vehicle

Source: internet + anecdotes

Connectivity
More and more electronic systems are being
connected to the internet. An unavoidable
consequence is that these devices will be
increasingly probed, attacked and
ultimately hacked.

Security holes are discovered in major software
components every day. They are regularly exploited
by individuals, criminal organisations, companies
and governments.

Clearly the longer a vulnerability remains unfixed,
the more opportunity for malicious exploitation.
Failure to patch systems promptly is negligence,
with potentially disastrous consequences.

As security specialist Bruce Schneier has said,
“You can't defend. You can't prevent. The only
thing you can do is detect and respond.”

Chaos ensues...
Hacker backdoors Linksys,
Netgear, Cisco and other routers

London firm at centre of hack
redirecting 300000 routers

Volkswagen sues UK university
after it hacked sports cars

CanSecWest Presenter
Self-Censors Risky Critical
Infrastructure Talk

Replicant Hackers Find and Close
Samsung Galaxy Back-door

Critical crypto bug leaves
Linux, hundreds of apps
open to eavesdropping

Why Toyota’s Oklahoma
Case Is Different | EE Times

Embarrassing stories shed light
on US officials’ technological
ignorance ...

Senator’s Letter To Automakers
Demands Info On Cyber Security...

EU has secret plan for police
to ‘remote stop’ cars

Hacker pwns police cruiser
and lives to tell tale

Snowden leak: GCHQ DDoSed
Anonymous & LulzSec’s chatrooms

New Flash vuln exploited (again).
Adobe posts emergency fix (again)

Pondering the X client
vulnerabilities

Hackers gain ‘full control’ of
critical SCADA systems

Samsung retries botched update
to Galaxy S3 smartphone

Researcher hacks aircraft controls
with Android smartphone

Update your iThings NOW:
Apple splats scary SSL
snooping bug in iOS

Knight Shows How to Lose
$440 Million in 30 Minutes

Biting into Apple

Malware designed to take over
cameras and record audio enters
Google Play

HTTPS More Vulnerable To Traffic
Analysis Attacks Than Suspected

http://www.theregister.co.uk/2014/01/06/hacker_backdoors_linksys_netgear_cisco_and_other_routers/
http://www.theregister.co.uk/2014/01/06/hacker_backdoors_linksys_netgear_cisco_and_other_routers/
http://www.pcpro.co.uk/news/security/387385/london-firm-at-centre-of-hack-redirecting-300-000-routers
http://www.pcpro.co.uk/news/security/387385/london-firm-at-centre-of-hack-redirecting-300-000-routers
http://www.telegraph.co.uk/finance/newsbysector/industry/10211760/Volkswagen-sues-UK-university-after-it-hacked-sports-cars.html
http://www.telegraph.co.uk/finance/newsbysector/industry/10211760/Volkswagen-sues-UK-university-after-it-hacked-sports-cars.html
http://threatpost.com/cansecwest-presenter-self-censors-risky-critical-infrastructure-talk/104687
http://threatpost.com/cansecwest-presenter-self-censors-risky-critical-infrastructure-talk/104687
http://threatpost.com/cansecwest-presenter-self-censors-risky-critical-infrastructure-talk/104687
http://yro.slashdot.org/story/14/03/13/1234204/replicant-hackers-find-and-close-samsung-galaxy-back-door?utm_source=rss1.0mainlinkanon&utm_medium=feed
http://yro.slashdot.org/story/14/03/13/1234204/replicant-hackers-find-and-close-samsung-galaxy-back-door?utm_source=rss1.0mainlinkanon&utm_medium=feed
http://arstechnica.com/security/2014/03/critical-crypto-bug-leaves-linux-hundreds-of-apps-open-to-eavesdropping/
http://arstechnica.com/security/2014/03/critical-crypto-bug-leaves-linux-hundreds-of-apps-open-to-eavesdropping/
http://arstechnica.com/security/2014/03/critical-crypto-bug-leaves-linux-hundreds-of-apps-open-to-eavesdropping/
http://www.eetimes.com/author.asp?section_id=36&doc_id=1319910
http://www.eetimes.com/author.asp?section_id=36&doc_id=1319910
http://www.networkworld.com/community/blog/embarrassing-stories-shed-light-us-officials-technological-ignorance
http://www.networkworld.com/community/blog/embarrassing-stories-shed-light-us-officials-technological-ignorance
http://www.networkworld.com/community/blog/embarrassing-stories-shed-light-us-officials-technological-ignorance
https://securityledger.com/2013/12/senator-asks-automakers-about-cyber-security-privacy-plans/
https://securityledger.com/2013/12/senator-asks-automakers-about-cyber-security-privacy-plans/
http://www.telegraph.co.uk/news/worldnews/europe/eu/10605328/EU-has-secret-plan-for-police-to-remote-stop-cars.html
http://www.telegraph.co.uk/news/worldnews/europe/eu/10605328/EU-has-secret-plan-for-police-to-remote-stop-cars.html
http://www.theregister.co.uk/2011/05/03/cop_car_hacking/
http://www.theregister.co.uk/2011/05/03/cop_car_hacking/
http://www.theregister.co.uk/2014/02/05/gchq_anonymous_ddos_spat/
http://www.theregister.co.uk/2014/02/05/gchq_anonymous_ddos_spat/
http://www.theregister.co.uk/2014/02/20/flash_adobe_posts_emergency_fix/
http://www.theregister.co.uk/2014/02/20/flash_adobe_posts_emergency_fix/
https://lwn.net/Articles/551818/
https://lwn.net/Articles/551818/
http://www.itnews.com.au/News/369200,hackers-gain-full-control-of-critical-scada-systems.aspx
http://www.itnews.com.au/News/369200,hackers-gain-full-control-of-critical-scada-systems.aspx
http://www.bbc.co.uk/news/technology-25265889
http://www.bbc.co.uk/news/technology-25265889
http://www.theregister.co.uk/2013/04/11/hacking_aircraft_with_android_handset/
http://www.theregister.co.uk/2013/04/11/hacking_aircraft_with_android_handset/
http://www.theregister.co.uk/2014/02/21/apple_patches_ios_ssl_vulnerability/
http://www.theregister.co.uk/2014/02/21/apple_patches_ios_ssl_vulnerability/
http://www.theregister.co.uk/2014/02/21/apple_patches_ios_ssl_vulnerability/
http://www.businessweek.com/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-minutes
http://www.businessweek.com/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-minutes
http://www.economist.com/blogs/babbage/2014/02/internet-security
http://arstechnica.com/security/2014/03/malware-designed-to-take-over-cameras-and-record-audio-enters-google-play/
http://arstechnica.com/security/2014/03/malware-designed-to-take-over-cameras-and-record-audio-enters-google-play/
http://arstechnica.com/security/2014/03/malware-designed-to-take-over-cameras-and-record-audio-enters-google-play/
http://it.slashdot.org/story/14/03/07/1711215/https-more-vulnerable-to-traffic-analysis-attacks-than-suspectedhttp://it.slashdot.org/story/14/03/07/1711215/https-more-vulnerable-to-traffic-analysis-attacks-than-suspected
http://it.slashdot.org/story/14/03/07/1711215/https-more-vulnerable-to-traffic-analysis-attacks-than-suspectedhttp://it.slashdot.org/story/14/03/07/1711215/https-more-vulnerable-to-traffic-analysis-attacks-than-suspected

Codethink The Codethink Way

The Rise of FOSS and Linux in
embedded electronic devices

With high-volume devices, a key
commercial driver is reduction of the
overall Bill of Materials (BoM) cost. Since
traditionally software has been licensed
on a per-unit royalty basis, the software
license cost is added to the BoM. This was
the model for Symbian, Nucleus, VxWorks
and is still the commercial approach for
Microsoft Windows, Blackberry QNX
and Green Hills Integrity.
However, Linux and other free and open source
(FOSS) solutions can be used with zero license cost
addition to the BoM, so long as users abide by the
applicable licenses and are willing to bear the cost
of understanding the software and integrating it.

This in part explains the dramatic uptake of Linux
and BSD for consumer devices and mobile handsets.
Google’s Android is a Linux-based operating system.
Apple’s iOS and MacOS have been built on the
work of BSD and many other FOSS projects.

Why would anyone agree to pay $10 per unit
royalty on a device destined to ship a million
or more units if there’s a zero royalty option
that can be made to work?

The economic advantage of this zero BoM cost
argument seems unassailable for high volume
devices, from cellphones, to cars. This also applies
for hyperscale datacenter systems, smart metering
systems, defence systems, medical equipment,
wearable devices and so on.

The only commercially viable counter to Linux is that
the risks and/or costs of adoption, development,
integration and test may make the overall business
case for a FOSS approach worse. In other words if
the Non-Recurring Engineering (NRE) to implement
the specific FOSS solution are too high, or the
project will take too long.

In fact, the costs, risks and time required for
implementation of custom FOSS systems are
extremely high, as with all embedded projects.

Codethink’s frustration at this situation is what
caused us to start down our own path in the first
place. We have been seeing and dealing with the
same mistakes in project after project, customer
after customer, market after market with a
multitude of embedded OSes.

In our view, the lack of understanding and
measurability in the overall software engineering
process makes it impossible for organisations
to consider objectively whether the TCO for any
particular approach will be better or worse than
FOSS. Arguably this is what makes it possible for
companies such as Microsoft, QNX, Green Hills
among others, to continue with the royalty-based
model, particularly where systems require hard real-
time, deeply secure or safety-critical performance.

However, it is clear that most vendors of proprietary
approaches have already been compelled to move
towards Linux. Wind River, Mentor Graphics and
ENEA have all seen the writing on the wall, and
now offer Linux development platforms in addition
to their proprietary solutions.

Unfortunately this does not appear to be leading
to increased efficiency and reduced costs. For
example, one of our automotive customers recently
noted that after Mentor acquired MontaVista’s
automotive business, effectively reducing the
number of recognised automotive software ‘platform’
vendors from three down to two, both Mentor and
Wind River “virtually doubled their prices”.

2 Total Cost of Ownership

Codethink The Codethink Way

We can’t even
measure this

There is almost no reliable scientific
research about large-scale software
projects, so it is quite difficult to support
this overall argument with facts.
Many widely cited ‘truths’ for software engineering
turn out be be based on inadequate science, hidden
agendas and/or misinterpretations.

For example:

– �Consultants have been happy to facilitate huge-
scale ‘Scrum’ and ‘Agile’ initiatives in Nokia,
Vodafone, UK Government and many more
organisations, often with disastrous results;

– �The Linux Foundation published a white papers
entitled “The Economic Value of the Long
Term Support Initiative (LTSI)” and “Value of
Collaborative Development” With no hard data to
go on, the authors made a series of questionable
assumptions, leading to conclusions which are
not credible.

3 Boehm, Barry W. “Software engineering economics.” (1981).
4 �“The Leprechauns of Software Engineering - Leanpub.” 2012. 22 Feb. 2014

<https://leanpub.com/leprechauns>
5 �“Waterfall model - Wikipedia, the free encyclopedia.” 2004. 22 Feb. 2014

<http://en.wikipedia.org/wiki/Waterfall_model>
6 �“Acceleration Case: Jury Finds Toyota Liable | EE Times.” 2013. 22 Feb. 2014

<http://www.eetimes.com/document.asp?doc_id=1319897>
7 �“Vodafone turns its back on ‘360 • The Register.” 2011. 22 Feb. 2014

<http://www.theregister.co.uk/2011/10/18/vodafone_kills_360/>
8 �“Francis Maude plays down universal credit IT row ... - The Guardian.”

2014. 22 Feb. 2014 <http://www.theguardian.com/politics/2014/jan/08/francis-
maude-universal-credit-it-row-dwp>

9 LTSI Documents
10 LF Value of Collaborative Development

– �Barry Boehm’s widely quoted Software
Engineering Economics was based on a very
limited sample of projects, and over the years
his findings have been overvalued;

– �The widely adopted ‘Waterfall’ model was actually
based on a fundamental misunderstanding of the
original author’s intentions;

– �The champions of so-called Agile & Lean
practices for software claimed to draw heavily on
Toyota’s innovations for automotive manufacture,
yet to the limited extent that this is true, it must
be clear that system software development is
very unlike traditional manufacturing;

– �Moreover, the recent Unintended Acceleration
lawsuit demonstrates that Toyota has itself
struggled to deliver software to meet the quality
necessary for safety-critical systems;

– �‘Scrum’ has been widely adopted over the last
decade in industries and organisations where its
use is clearly inappropriate (The rules of ‘Scrum’
do not scale beyond small localized project teams
of 5-9 people, nor can ‘Scrum’ work for projects
with fixed-price commercial constraints.);

https://leanpub.com/leprechauns
http://en.wikipedia.org/wiki/Waterfall_model
http://www.eetimes.com/document.asp?doc_id=1319897
http://www.theregister.co.uk/2011/10/18/vodafone_kills_360/
http://www.theguardian.com/politics/2014/jan/08/francis-maude-universal-credit-it-row-dwp
http://www.theguardian.com/politics/2014/jan/08/francis-maude-universal-credit-it-row-dwp
http://ltsi.linuxfoundation.org/documents/ltsi-documents
http://www.linuxfoundation.org/news-media/announcements/2015/09/linux-foundation-releases-first-ever-value-collaborative

Codethink The Codethink Way

The ugly truth about
‘software engineering’

We argue that system-level software
production practices are lagging a long
way behind other engineering disciplines.
A tremendous amount of uncertainty and
ignorance still remains:

– �most organisations are unable to manage
complex software projects effectively;

– �most managers allocating people, resources and
tools for software projects do not have enough
reliable information or understanding on which
to base their decisions;

– �most executives have never been involved in system-
level software projects or embedded software projects;

– �many executives with responsibility for electronic
systems products and projects delivery do not even
know what the activity of programming involves;

– �most developers would agree that code review is a
good thing, yet do not develop the habit and practice
of reviewing other people’s code, and most code is
not actually reviewed;

– �most software developers are not very good at
the job and create software which is unreliable,
insecure or both;

– �most developers overstate their own abilities and
do not properly understand the tools and techniques
that they claim to use; and

– �given the lack of understanding and measurability,
these overstatements and failures in understanding
routinely go unnoticed.

– �‘software engineering’ is not really an
engineering discipline;

– �most software developers are self-taught,
learning from Google and colleagues;

– �there are no accurate metrics for analysing and
comparing the scale, complexity and quality of
software projects;

– �there is no reliable way to measure or to compare
software developer productivity for different people,
languages, tools, processes or projects;

– �there is no accepted way to distinguish software
maintenance from software development;

– �there is no way to estimate accurately the effort
required to develop software;

– �there is no ‘methodology’ that works predictably
across the range of projects which the technology
industries are now required to deliver;

– �most ‘methodologies’ significantly overstate
their benefits;

– �most ‘methodologies’ are described incompletely and in
vague terms, to the extent that practitioners can adjust
their positions on a case-by-case basis if necessary;

– �those ‘methodologies’ which are strictly defined tend
to be so prescriptive and long-winded that they are
unworkable in practice, so teams end up ignoring them; 11 Programmers should not call themselves engineers

12 Pants on fire: 9 lies that programmers tell themselves

http://www.theatlantic.com/technology/archive/2015/11/programmers-should-not-call-themselves-engineers/414271/
http://www.itworld.com/slideshow/144133/pants-fire-9-lies-programmers-tell-themselves-409476

Codethink The Codethink Way

The Codethink Way

Our broad scope is to dissect, understand
and optimize the whole process of
specifying, creating, modifying, testing,
deploying, maintaining and updating
large-scale custom FOSS-based software
systems. We have already proved that we
can standardize the workflow and tooling
for system-level software development,
using an integrated and self-sufficient set
of fully open source components.
In short, Codethink aims to establish ‘software
engineering’ as a genuine engineering discipline.
We want processes and tools which are:

1	 Efficient
2	 Reproducible
3	 Predictable
4	 Traceable
5	 Reliable
6	 Secure
7	 Safe

In order to achieve this, we are creating a cohesive
approach to handle all of the following

– �Requirements capture;

– �System specification and design;

– �Engineering work breakdown, estimating
and work scheduling;

– �Embedded software development environment
and target operating systems;

– �Source code and work products review;

– �Team workflow;

– �Integration and build system;

– �Rigorous bootstrap for new devices
and architectures;

– �Linux software distribution;

– �Virtualization;

– �Whole system configuration management
and change control;

– �Continuous integration and continuous
delivery; and

– �Atomic updates for running production systems

Codethink The Codethink Way

Our work involves developing and integrating open
source components to form an end-to-end solution.

Our established implementation includes a
complete toolchain and Linux operating system,
and we expect that most of our target users
will be Linux-based.

Much of our work can be also applied
for non-Linux systems:

– �Our preferred operating systems, tools and
build envirtonments can be used to create non-
Linux targets, for example BSD, bare-metal
RTOS and firmware.

– �Our preferred workflow components can be
deployed on Linux, Windows, Mac, whatever.

Codethink The Codethink Way

Proof Points

Codethink’s approach and software tools
already allows us to work significantly
faster and with much less engineering
effort than other approaches, particularly
for OS bringup on new architectures and
hardware. Key proof points over the last
18 months include:
In short, Codethink aims to establish ‘software
engineering’ as a genuine engineering discipline.
We want processes and tools which are:

– �First big-endian Linux OS for server class
ARM systems, delivered in three months;

– �Big-endian Linux OS for ARM VE TC2,
delivered in two weeks flat;

– �Creation and bringup of full GENIVI
Baseline on i.MX6 and x86;

– �Bringup of custom infotainment stack
on NVIDIA Tegra; and

– �Full OS implementation on IBM POWER,
delivered in six weeks.

Updating Components
A common problem for real-life projects is the cost
and time involved in updating the Linux kernel and
other system components. Typically this takes
significant integration effort by many engineers over
a period of months. In the worst case, updating can
be ‘a nightmare’ or ultimately prove to be impossible.

Our normal demonstration is to start from an existing
complete embedded system, and update it to a new
version of Linux.

The whole process, including building the new
system with the latest never-before-seen kernel,
can normally be done in under fifteen minutes:

https://vimeo.com/88970773

The Codethink Way
Codethink's overall approach to the 'software
engineering' problem described here involves broadly:

– �Philosophy and guidance describing how to do
software engineering 'the Codethink way';

– �A breakdown of the system software engineering
lifecycle and analysis to determine the information,
techniques and tools required at each stage;

– �Software tooling and infrastructure which support
engineers working the Codethink way; and

– �Data definitions to create complete software
systems reproducibly using Codethink
recommended tooling.

– �These four areas are considered in the
following sections.

13 One provider had quoted ‘$10M and five years’ for this project
14 This was an urgent requirement after other organisations had been promising a solution for several months
15 �GENIVI is a non-profit consortium whose goal is to establish a globally competitive, Linux-based operating system, middleware and platform for the automotive in-vehicle

infotainment industry

https://vimeo.com/88970773

Codethink The Codethink Way

Codethink Philosophy

– �We are seeking processes and tools that are
efficient, reliable, repeatable and secure.

– �We aim for a culture of collaboration, excellence,
honesty and transparency.

– �We need engineers to share knowledge and co-
operate in an effective way so that

 – all work is documented;
 – all work can be independently reviewed; and
 – �all reviews can be considered and discussed,

and improvements adopted.

– �We know that mistakes are unavoidable and
therefore, our people and processes need to
be tolerant and cope robustly when things
go wrong, so we want

 – �all source code to be available so we can diagnose
problems as effectively as possible; and

 – �all workflow and development history to be traceable,
so that we can track back to why a specific function
or line of code was implemented and by whom.

– �We know that all software engineering ultimately
requires frequent ongoing repetitions of 'change,
test and release' loops, so we want to

 – �understand and improve how loops are done;
 – �optimise the time and effort required for loops; and
 – �provide visibility and feedback on loops and

encourage further optimisations.

We know that engineer uncertainty and delay in
communications are key causes of wasted time
and effort, so we need

 – �fast and effective channels for information requests,
discussions and reviews between engineers, teams
and organisations; and

 – �standardisation of processes so that interested
participants can become adept and know what to do.

We cannot satisfy all requirements or work with all
technologies, so we must choose our weapons and
minimise our workload by

 – �using and integrating the best available
open source solutions to meet our needs;

 – �aligning with the upstream developers
to minimise our deltas;

 – �improving existing tools where the cost of change is
justifiable (and in the case of OSS tools, contributing
these changes back to the community); and

 – �introducing new solutions where current offerings do
not satisfy our overall objectives as described herein.

Codethink The Codethink Way

System Software Engineering Lifecycle
In order to become efficient we need to break down, understand, standardise and improve the whole lifecycle
of system software engineering. Across this broad area we aim to provide workflow, tooling and infrastructure
to minimise the pain, risk, effort and time required to build complex system software.

Activity Example established players Codethink *

Project management, work
planning, work co-ordination

MS Project, Pivotal, Jira,
Trello, Google

Hobokan
Internet Relay Chat (IRC)
Mailing Lists (ML)

(2)

Issue tracking Fogbugz, Jira, Trac, RT, Mantis (3)

Configuration management Rational, Github, Gitlab Trove (1)

Code and work review Gitlab, Gerrit, Crucible Trove, Mustard, ML (2)

Requirements capture Rational (Doors) Mustard (2)

System architecture design Enterprise Architect, Visio, Rational Mustard (2)

Initial board bringup ??? Repeatable process (2)

Device driver development ??? ??? (2)

Operating system bootstrap ??? Repeatable bootstrap (1)

Middleware development ??? ??? (1)

Applications development IDE eg Eclipse, Visual Studio (3)

Overall system integration ad-hoc Baserock (1)

Continuous integration Jenkins, Travis Baserock Mason (2)

Internal system deliveries tarballs Baserock deploy (2)

Production systems rollout Red Bend (3)

WV Red Bend (3)

Codethink The Codethink Way

(*) Efficiency factor as outlined below:

(1) �We have a solution which is already effective,
traceable and demonstrably better than
other solutions

(2) �We have incomplete/imperfect tools -
our efficiency is the same or better
than other approaches

(3) �It is currently easier/better/faster/cheaper
to do this without our existing R&D solution

System Definitions
We maintain a public set of declarative data
definitions of a set of example systems at

http://git.baserock.org/cgi-bin/cgit.cgi/baserock/
baserock/definitions.git/

These include example implementations for x86 (64-
bit and 32-bit), ARMv7 and IBM POWER architectures,
and include pre-integrated software sets for a wide
range of components including

– �Linux system-level components including
kernel, systemd, openssh

– �Vase-level developer tools including GCC,
make, autotools

– �Advanced file systems including BTRFS and Ceph

– �Graphics and multimedia

– �Virtualization

– �Bluetooth and wifi

– �Network connectivity and telephony

– �Qt

– �GTK+

– �Enlightenment and XFCE desktops

– �OpenStack

Clearly these components and many more are already
integrated in other Linux distributions and build
systems including Debian, Ubuntu, RHEL, SUSE,
Gentoo, Yocto, Buildroot etc.

The key differentiator in our approach is that we have
streamlined and simplified the process for integration
to reduce the time and effort dramatically. As a result
the total amount of information required to describe
our systems relative to upstream is much reduced vs
other approaches.

Comparing our definition files against Yocto/
OpenEmbedded bitbake recipe files, for example:

– �morph files are significantly smaller and simpler
than bitbake recipes

– �morph files are designed to be machine parseable
- as a result we can manipulate whole systems via
software to update our design. The complexity
and irregularity of bitbake recipes means this is
not really possible in Yocto

– �more than half of the components we integrate
require no description by us - they are used
directly as released by their upstream developers.

16 �Our kanban tool https://github.com/CodethinkLabs/Hobokan
17 �Our approach for managing source code for the full system software stack

- e.g. http://git.baserock.org
18 �Our requirements capture and system architecture design tool:

https://github.com/CodethinkLabs/Mustard
19 �Integrated Development Environment -

GUI-based solution combining editor, debugger, make, version control

http://git.baserock.org/cgi-bin/cgit.cgi/baserock/baserock/definitions.git/
http://git.baserock.org/cgi-bin/cgit.cgi/baserock/baserock/definitions.git/
https://github.com/CodethinkLabs/Hobokan
http://git.baserock.org
https://github.com/CodethinkLabs/Mustard

Codethink The Codethink Way

Competitive Landscape

Many organisations offer methodologies
and tools to reduce their customers’
software engineering costs and time
to market. Similarly, many technology
organisations develop and improve tools
and techniques for their own use. Thus,
there is a wide range of organisations with
interest and/or offerings around software
productivity:

– �Consulting services eg IBM, Accenture,
Symphony Teleca, Capgemini

– �Software ‘platforms’ and tools eg Mentor
Graphics, Wind River, ENEA

– �Operating systems eg Red Hat, Canonical,
SUSE, Microsoft

– �Not-for-profit industry organisations including
Linaro, GENIVI, and the Linux Foundation

– �Design of whole systems eg LG, Visteon,
Continental, Robert Bosch, BAe Systems

– �Software tools to sell hardware or intellectual
property eg HP, Intel, ARM, NVIDIA, Atmel

– �Device companies eg Apple, Ford, Micron,
Nokia, Samsung, Volkswagen

– �Service providers eg Vodafone, BSkyB,
BT, Bloomberg

software quality and productivity issues we have
identified. The problems have remained unsolved
for decades, and everyone is too busy and focused
on the day job to consider how to clean up the
overall mess.

In many cases, the business models above may be
structurally opposed to improving things, for example:

– �Consulting services charge for engineer time,
so higher productivity is not in their interest;

– �Tool vendors’ revenues often come from user/
seat volumes and fees - the more engineers
their customers need, the better;

– �OS vendors need to justify their license/support/
subscription fees - demystifying their processes
would be bad for business;

– �Hardware and IP vendors typically see system
software as a necessary sweetener to win
customers, so software is rushed to meet a demo
or release date - quality is not priority; and

– �Systems and device companies usually prioritize
costs and revenues associated with hardware,
and fail to recognise how expensive their
software efforts ultimately are.

To the best of our knowledge, no organisation, apart
from Codethink, is actively working towards an overall
solution for the ‘software engineering’ problems
highlighted here.

In discussions at conferences and with customers,
prospects and partners, we find that in general,
people are either ignorant of, in denial of, or resigned
to acceptance of most of the issues we raise.

Codethink’s people have worked with most of
these organisations at various times, and our broad
conclusion is that everyone struggles with the

Codethink The Codethink Way

Organisation Offers

IBM Doors, Team Concert, Red Bend

Intel Yocto, Tizen

Wind River Wind River Linux Yocto-based

Mentor Graphics Mentor Embedded Linux, Sourcery Yocto-based

ENEA Enea Linux Yocto-based

Linaro Upstreaming, LEBs, LAVA, Support Member services

Linux Foundation LTSI, Yocto

Atlassian Jira, Confluence, Bamboo, Stash

Google Android, ChromeOS, Gerrit, Repo,

Canonical Ubuntu, Launchpad, Bzr

Red Hat RHEL

Gitlab Gitlab

Gitlab Gitlab

Gitorious Gitorious

Gitorious ptxdist

Elektrobit Software Factory

The Codethink Way

Codethink

www.codethink.co.uk
sales@codethink.co.uk

+44 161 660 9930

Whitepaper

© CODETHINK 2014–2017 All rights reserved

2017

