
The Need for Provenance, Traceability, Upstream Alignment

Open Source as
Supply Chain:

Codethink February 2017

www.codethink.co.uk
sales@codethink.co.uk

+44 161 660 9930

Whitepaper

© CODETHINK 2017 All rights reserved

If you are delivering complex systems or technology projects
in 2017, it is extremely likely your work involves open source
software to some degree. You may or may not be fully aware of
your organisation’s dependence on open source, but given the
unavoidable economic advantages of free versus paid-for, it is
almost certainly increasing.

Codethink Open Source as Supply Chain

We aim to provide insight and
answers for the following questions:

Where does open source come from,
and why does that matter?

1

2
What happens if we treat open source
like our own IP?

3
How can we minimise our costs and risks
when using open source?

Major players like Apple, Intel, ARM, IBM, Oracle,
HP, Samsung, Cisco, Facebook and Google are all
proactive contributors to and exploiters of open
source projects. Even Microsoft is making its
solutions work with Linux, and has open sourced
core technologies such as the .NET framework.

Here we consider use of open source from the
perspective of companies and teams working
to bring new or updated products or services
to market, and to maintain them over extended
production lifetimes. We draw on Codethink’s
experience across a wide range of organisations;
IP and silicon vendors, electronics companies,
system integrators, OEMs, ISVs, OSVs, service
providers and industry initiatives.

Any project with heavy dependence on specific
open source projects should consider aligning with
the upstream directions of those projects. This
reduces overall maintenance costs and avoids the
trap of being isolated on old software which will
become increasingly insecure and hard to fix.

Codethink Open Source as Supply Chain

1

2

4

The key lessons we highlight from
the case studies here are:

Organisations can and should treat open source
with the same diligence as they apply to elements
of their supply chain. This includes

– Understanding Bill of Materials, which means establishing
which components are we using, and where they come
from, and terms associated with their use

– How much are we paying an integrator/supplier for these
components vs the cost of going direct. Taking open source
direct from upstream is free, but with it comes the overhead
of direct interaction and more suppliers overall

– Dealing with new revisions/versions of components
on an ongoing basis

– What happens when components reach end-of-life

– Who carries liability for problems associated with components.
In many cases it is simply impossible to assign or delegate this
risk, due to the ‘as is, no warranty’ nature of open source

An ongoing, reliable and effective process for
establishing provenance and reproducibility of
open source software is a must for major projects.
It is unsafe to

– Rely on the continuity of community-provided infrastructure

– Use open source code without the ability to demonstrate
provenance and licence compliance

The Key Lessons

3
Proactive engagement with the upstream open
source communities gives better visibility of where
projects are going, including early warning about
long-term threats and technical opportunities

Codethink Open Source as Supply Chain

1
Free software? No, our code is commercial
quality. Open source? No sir!

An experienced software production strategist
joined an international vendor of high-end
electronics equipment. A key objective for his role
was to help them increase their effectiveness and
reduce costs for development and maintenance of
software in the company’s products. Each unit is
multifunction and contains many microprocessors.
The cost and complexity of the software required
for each device is a growing problem.

When asking his new colleagues about the
company’s approach to open source he was
surprised to discover that many senior engineering
managers did not even understand the concept.
In general the established company perspective
wrote off open source as unreliable, insecure,
untrustworthy.

Further investigation established that most of the
software in the units was actually being provided
by subsystem suppliers as part of their deliveries.
The official line from management in those
organisations also played down open source.
Each supplier was offering custom solutions
leveraging their own internal IP to satisfy the
needs of particular products and projects.

But by this time the strategist was smelling a rat.
Discussions with actual software engineers at his
company had established that they were, in fact,
using open source quite heavily in many cases.
This was unavoidable given the deadline pressures
they faced, plus the time, cost and friction
associated with procuring commercial equivalents.
Management was either unaware of this, or turning
a blind eye.

Case Study

Having established that company leadership was
not properly aware of the spread of open source
throughout the organisation and its products,
the strategist worked to quantify the problem by
running a research project. His team procured one
of the company’s products in the market, stripped it
down in the lab, and used engineering forensics to
establish what software was actually running on
the various microprocessors.

More than half of the total code on the devices
was found to be open source.

Given that the company had no corporate
knowledge or understanding of this, it had no
established practices for compliance with applicable
licenses, nor did it have any capability to establish
provenance of the software it was using.

Just saying ‘stop using open source’ was clearly
not an option.

In many cases its contractual commitments with
suppliers neglected to address the issue of open
source entirely, since most agreements assumed
by default that the systems were proprietary. In
other cases the specific terms (eg ‘must agree use
of open source in advance’) had been disregarded,
often through ignorance on both sides. Worse, the
company had no cost-effective or timely way to fix
the situation. This would ultimately require root and
branch overhaul and training for both its internal
engineering and supplier management approach.

For long-lifetime products whose components
were no longer supported directly by suppliers,
no solution could be found. This time bomb
remains unexploded, as far as we can tell.

Codethink Open Source as Supply Chain

2
Oops, there goes the community.

A multi-year project was launched, involving
custom electronics design with an integrated
software application stack. The software was
to be developed by hundreds of software
engineers spread internationally across several
organisations (chipset vendor, board design, device
manufacturer, system integrator, end customer).
After discussion between the various participants,
the project chose a popular sponsored open source
software distribution as its architecture platform.

Approximately 18 months into the development, the
open source distribution was cancelled, after being
abandoned by its sponsors. From a high level this is
similar to what happens when a commercial vendor
pulls the plug on a product - it’s a pain, but we need
to transition to an alternative.

However in this case there were some
factors which differ from normal business:
– Because the distribution was ‘free’ the project

had no commercial commitment from anyone
to provide support while transitioning to an
alternative

– The project was relying on ‘community’
resources to maintain the source code
of the distribution itself

– Although the cost of maintaining public
documentation, source code repositories
and build infrastructure was very small versus
marketing and other activities, the sponsors took
down the community websites without notice

Case Study

– As a result the project found itself suddenly
without access to documentation and source
code, and its ability to maintain its own build
processes was irreparably damaged.

Ultimately there are only a few approaches
to protect against this kind of risk
– Restrict use of open source - but this is

increasingly hard to do (see CASE STUDY ONE)

– Engage with commercial providers - but in the
non-Linux case mentioned above, for example,
the leading commercial provider was destroyed
when sponsors pulled the plug

– Participate in the community so you can
understand and ideally influence the agenda, and
get advance warning of trouble ahead. In the Linux
case above, Codethink was aware that sponsored
engineering was being diverted away from the
distribution more than six months before the
project was publicly killed.

Note that this is a recurring situation which has
hit many organisations hard. The wording above
actually describes two completely different projects,
with different technologies, in different markets.

One involved a Linux distribution, the other did not.

Codethink Open Source as Supply Chain

3
What do you mean open source? We wrote it,
it’s ours, pay up!

A software vendor wanted to expand its offering,
by including functionality similar to capabilities
developed by a startup. To reduce its time and
cost to market, the startup had heavily leveraged
existing open source, and in fact was publishing the
core of its software solution under applicable open
source licenses, on GitHub.

Case Study

The software vendor engaged in commercial
discussions with the startup, but a mutually
acceptable deal could not be reached. As a result,
the vendor decided to implement its own solution,
and after careful consideration decided to adopt
the startup’s published open source software as
the basis of the work.

When the startup later became aware of this,
they removed their code from GitHub, and later
attempted to seek legal redress with the vendor.

However, the vendor was working with Codethink
and was unsurprised by the startup’s attempt to
derail their project. The whole development had
been established with clear understanding of the
rights and restrictions inherent in open source.

The project reliably maintained a complete mirror
copy of everything which had been published
by the startup. This included all the history for
modifications made available in public by the startup
right up to the point at which they attempted to
move the goalposts.

As a result the vendor could establish clear
provenance and traceability for the work done.
They were able to demonstrate the whole process
by which they sourced, adapted and re-used the
software in accordance with the applicable licenses.

Codethink Open Source as Supply Chain

4
 To upstream, or not to upstream

Our customer had selected an advanced new
SoC from a well-known vendor, but for technical
reasons needed custom work on the Board
Support Package, including kernel drivers,
to fit the specifics of the project.

Case Study

The SoC vendor was committed to supporting, but
its preferred route was to make the modifications
against its standard BSP, which at the time of the
decision was based on LTSI (Long Term Support
Initiative) Linux 3.4. LTSI was established with the
help of the Linux Foundation to provide a standard
support approach for consumer electronics. Each
LTSI release comes to end-of-life in around two
years.

Codethink argued that doing the work on LTSI was
the wrong approach, given our customer’s expected
time horizon for the project of five to fifteen years.
Our proposal, accepted by the customer, involved
working to get the BSP drivers upstream into the
mainline kernel.

Approximately one year later, the SoC vendor
noticed that our customer was delivering exciting
solutions on their silicon by exploiting advanced
virtualisation features which were not possible with
the vendor’s standard BSP. They were very pleased
to see their chips in such advanced products, but
wondered how this was being achieved, without
the software they were providing.

The explanation is simple - by alignment with
mainline Linux and Codethink’s work to upstream
support for the SoC, the customer has been able
to exploit features from recent kernels. At the time
of writing their system can run Linux 3.19, while the
SoC vendor’s official BSP is still at 3.10.

Codethink Open Source as Supply Chain

5
We’re not using open source tools -
you need to use what our IT gives you

Codethink was engaged to help an international
electronic systems provider develop its next
generation product, based on Linux with custom
hardware.

Case Study

At the beginning of the project, Codethink discussed
software engineering process, tools and approach.
The customer had standardised on a range of
practices and tools, primarily using Windows-based
technologies.

Given the nature of the work, our team would be
designing a custom Linux stack for the customer’s
new hardware. This would require building (and
rebuilding) and integrating many tens of open source
software components, as well as developing new IP
for the customer’s product.

We convinced the customer to let us get underway
using the normal tools and practices for Linux-based
development - Linux itself, Git, IRC, mailing lists.

In spite of this, members of the customer team
insisted that our engineers would need to adopt
their mandatory corporate tools once the project
was properly underway. This would mean Windows
by default, with Linux in a Virtual Machine, plus tools
such as Skype and Outlook.

At one point we were told that the project would be
forced to drop Git, and adopt a corporate version
control system specified by the customer’s central
IT team. We had to demonstrate to them that this
would make the work impossible.

The project was delivered successfully, but our team
faced some resistance from customer engineers
who continued to use Windows tooling by default.
Ultimately our customer had to recruit different staff
(with Linux tools experience) since the Windows-
based team seemed unable to acquire deep Linux
knowledge for themselves.

Open Source as Supply Chain:
The Need for Provenance, Traceability,
Upstream Alignment

Codethink

www.codethink.co.uk
sales@codethink.co.uk

+44 161 660 9930

Whitepaper

© CODETHINK 2017 All rights reserved

February 2017

