Cededsmiinlk

The Trustable Software Framework

A new way to measure risk in continuous delivery of critical software

Codethink is an international provider of
expert software engineering, solutions, and
consultancy services...

mainly based on FLOSS.

“"Why do you trust software?”

curl --proto '=https' --tlsvl.2 https://sh.rustup.rs -sSf

@

€ (from 2016)

Q: “How could open source concepts,
techniques and tools help us to
achieve safety in complex systems?”

€

FLOSS
e doesn't comply with the standards
e doesn't have “requirements”
e doesn't have “architecture”
e no traceability
... S0 the quality is not acceptable

Safety (or FuSa) Standards applying to software...

IEC 61508

(safety -related systems

=

ISO 26262
(automotive)

IEC 62279
(rail)

L)

IEC 61511

IEC 60601
(medical)
2
IEC 61513

(power plants)

(process industries)

DO-178C
(aerospace)

HOW STANDARDS PROUFERATE:

(<EE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

SITUATION:

THERE ARE
|4 COMPETING
STANDARDS.

11?7l Ripiculovs!

WE NEED To DEVELOP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONES
USE CASES. v

OCON:

SITUATION:

THERE ARE
|5 COMPETING
STANDARDS.

https://xkcd.com/927/

PDF Price
€ BACK © MOST RECENT

[EC 61508 Ed. 2.0 En:2010 CMV 4,989.00
- £.U Eh: ANSI Member Price
Functional Safety Of Electrical/Electronic/Programmable 33 671.20

Electronic Safety-Related Systems - Parts 1 To 7 Together With

A Commented Version (See Functional Safety And IEC 61508) = ADD TO CART

SORRY, IMAGE IS IEC 61508:2010 CMV contains the 2010 revision of parts 1 to 7 of IEC 61508 on
AL QU RLE Functional Safety, along with a Redline version commented by a world leading Not a Member?
expert
PDF Price
This prody @ MOST RECENT 1,480, 10
i ;

ISO 26262 - Road Vehicles Functional Safety Package

. 2 ADD TO CART
ISO 26262 - Road Vehicles Functional Safety Package - Parts 1

To 12 (Save 40% Off List Prices) Not a Member?

Find out how to get ANSI

The ISO 26262 - Road Vehicles Functional Safety Package provides the Member Discount

comprehensive collection of standards to manage and implement road vehicle
functional safety from the concept phase to production and operation. The
package has supporting documents such as guides, vocabulary and safety
oriented analysis. ISO 26262 is the adaptation of IEC 61508 to comply with
needs specific to the application sector of electrical and or electronic (E/E)
systems within road vehicles. This package includes:

NOTE: these standards are created by volunteers - subject-matter experts working for free!

0% VS-A8 00 | MN'OOMNIHLIA0D

ISO 26262 base assumption

systematic random

faults faults

software
faults

hardware faults

This was defensible for
microcontroller-based
systems, where the
expectation was
deterministic software
behaviour

0¥ VS-A8 00 ‘ AN'OOMNIHLI

Implication of “no random faults”

Since all faults are
‘systematic’, focus all
your attention on ‘best
practice’ processes...
specification,
architecture, design,
testing, traceability:.

Unfortunately the standard’s
recommended processes are
no longer best practice.
Software integration 1s
hardly even considered.

Most modern software 1s
created 1teratively, without
formal specifications™. The
processes and techniques
themselves evolve over the
life of a project.

* most organisations innovating in software have adopted “Agile”, Open Source or both

The V-Model: Best practice?

Concept of Opera&:ion

2 ° gme . an

Operations "er'g‘,‘j‘;‘,m" Maintenance

) Validation
Project Requirements System
Definition and Verification
Architecture and Validation
Integration, _
Detailed Test, and Project
Design Verification Test and

Integration

Implermentation

>

Time

ISO 26262 base assumption

This assumption leads to
extreme concentration on
process... even to the point of
trying to establish new
processes for existing software,
no matter how mature,
successful or widely adopted...

systematic random
faults faults

software
faults
hardware faults

and NO FLOSS

We're not in Kansas anymore

Codebase size (log scale)

A

100Mloc
10Mloc
1Mloc

100Kloc

non-deterministic
hardware and
unspecifiable
software

10Kloc

1Kloc

non-deterministic hardware and
unspecifiable software
and
complex interactions (emergent behaviour)

microcontroller single core
microprocessor

multi-core several multi-core many complex ECUs
microprocessor microprocessors

Hardware complexity

>

07 ¥S-A8 00 | MN'0OXNIH13IA0D

Codethink base assumption

systematic

faults

software faults

hardware faults

random
faults

This 1s where we are
now; non-deterministic
behaviour in multicore
MiCcroprocessor systems
with L1 + L2 cache,
MMU and approx
1IMLOC of firmware

.. and millions more LOC
in our supply chain

0¥ VS-A8 00 ‘ AN'OOMNIHLIAY

IEC 61508 sets goals for failure rates...

IEC 61508

(safety -related systems

|
IEC 60601

(medical)

IEC 61511

P
IEC 61513

(power plants)

(process industries)

Low demand mode:

ISO 26262
(automotive) IEC 62279
(rail)
SIL

average probability of failure on demand

S W N

>102to <101

>103to <1072

>10%to <102

>10°to< 104

DO-178C
(aerospace)

High demand or continuous mode:

probability of dangerous failure per hour

>10%to<10~°

>10"to<107®

=108 to < 10~7 (1 dangerous failure in 1140 years)

>10%to <1078

0¥ VS-A8 00 AN'OO'MNIHLIA0D

>1078 to < 10~/ (1 dangerous failure in 1140 years)

This is a very hard target.

[trustable-software] [RFC] Trustable Software Engineering

Paul Sherwood paul.sherwood at codethink.co.uk
FriJul 8 17:26:02 UTC 2016

o Next message: [trustable-software] [REC] Trustable Software Engineering

o Messages sorted by: [date] [thread] [subject] [author]

"Trustable Software

Background

Complex and large-scale software now unc

- from entertainment and shopping to in! T pheljeve our overall objective has to be Trustable Software, i.e.

and security.

As Codethink CEO over the last five yeal "
to explore large-scale software project: — WE know where it comes from

with engineers and executives across a | _ we know hOW to bUlld lt

to interesting and challenging discussic

public institutions, industry bodies anc — Wwe can reproduce it
Many of the projects I get involved witt — WE know what it does
in terms of reliability, security, syste¢ __ l't dOES What l't iS supposed to dO

productivity. There are more people wrii

but when we look behind the fancy graph: — we can update it and be confident it will not break or regress

— much of the code is technically awful,

unreadable, hard to maintain :

- e yEtiiotonies® gle srake ol and perhaps most importantly...

- projects continue to be late or over |

behind 'Agile') . . ' P

— phones, computers, cars and industrial — W& have some confidence that it won't harm our communities and our
- error/crash messages on airport and a¢ :

quite common Chlld ren

- the latest payment systems are obvious

0¥ VS-A8 00 AN'OO'MNIHLIA0D

- PCs, servers and TVs are commonly being re-purposed into botnets
— average users' data can be widely and easily ripped off

- we're still dealing with indecipherable user-interfaces, dumb
password regimes etc.

https://lists.trustable.io/pipermail/trustable-software/2016-July/000000.html

Key lesson:

trust should be based on

evidence

https://gitlab.com/trustable/documents/-/wikis/hypothesis-for-software-to-be-trustable

Cededsmiinlk

Trustable
Software
Framework

Note: trustable as opposed to trusted, trustworthy

Wed 08 January 2025

Moving to Eclipse... codethink Joins Eclipse
Foundation/Eclipse SDV Working

By John Ellis

0 Trustable Software O Partnership

Codethink, Ltd., a global leader in software engineering services and solutions, today announced
its membership in the Eclipse Foundation and the Eclipse SDV Working Group as a Strategic
Member. This milestone reflects Codethink’s commitment to driving innovation and industry

trustable

Home Overview Contributing Relevant Projects Reading In addition, Codethink will
e Software portfolio to

oundation and its global

ftware that is auditable,

Overview EXTERNAL LINKS

Trustable is an open project based on community contributions that aims to make the systems and

Wiki

practices used to engineer software demonstrably “Trustable”, allowing the deliverables to be Mailin list
ailing lis

assessed. .

Gitlab projects

@ Trustable Tenets

We can offer software as Trustable when we

provide evidence support all of these claims...

1. Provenance

Know where it comes from, who is responsible,
and have confidence in them

4. Expectations

Know what it must do, and what it must not do

2. Construction

Know how to build it - reproducibly - from source

5. Results

It does what it must do, and does not do what it must
not do

3. Changes

Upgrade it and be confident it will not break or regress

6. Confidence

Measure and declare our confidence that it
will not cause harm

0 ¥S-A800 | MN'OONIHLIA0O @

21

Trustable Software Framework

The Trustable Software Framework (TSF) provides an extensible model for collecting, organising and evaluating evidence for
releases of a software project/product ("XYZ"), to allow a consumer to consider to what extent they should trust the software.
The TSF broadly identifies six key topics ("Trustable Tenets"), made up of more detailed factors ("Trustable Assertions").

TT-PROVENANCE: All
source code (and
attestations for
claims) for XYz
are provided with
known provenance.

with full reproducibility.

TT-CONSTRUCTION:
Tools are provided
to build XYZ from
trusted sources
(also provided)

TRUSTABLE-SOFTWARE:
This release of
XYZ is Trustable.

/

TT-CHANGES: XYZ
is actively maintained,
with regular updates
to dependencies,
and changes are
verified to prevent
regressions.

TT-EXPECTATIONS:
Documentation is
provided, specifying
what XYZ is expected
to do, and what
it must not do,
and how this is
verified.

TT-RESULTS: Evidence
is provided to demonstrate
that XYZ does what
itis supposed to
do, and does not
do what it must
not do.

TT-CONFIDENCE: Confidence
in XYZ is measured
by analysing actual
performance in tests
and in production.

TA-A_01: All sources
for XYZ and tools
are mirrored in
our controlled environment

2

TA-A_03: XYZ releases
are constructed
from controlled

or mirrored sources,
and are fully reproducible.

TA-A_06: Known bugs
or misbehaviours
are analysed and

triaged, and critical

fixes or mitigations

are implemented
or applied.

TA-A_08: Expected
or required behaviours
for XYZ are identified,
specified, verified
and validated based
on analysis.

/ AR

TA-A_10: Advance
warning indicators
for misbehaviours
are identified,
and monitoring mechanisms
are specified, verified
and validated based
on analysis.

A,

TA-A_12: Data is
collected from tests,
and from monitoring
of deployed software,
according to specified

objectives.

TA-A_13: Collected
data from tests
and monitoring of
deployed software
is analysed according
to specified objectives.

A

TA-A_02: Components
and tools used to
construct and verify
XYZ are assessed,
to identify potential
risks and issues

TA-A_04: All tests
for XYZ, and its
build and test environments,
are constructed
from controlled
or mirrored sources.

TA-A_05: All constructed
iterations of XYZ
include source code,
build instructions,
tests, results and
attestations.

TA-A_07: XYZ components,
configurations and
tools are updated
under specified
change and configuration
management controls.

TA-A_09: Prohibited
misbehaviours for
XYZ are identified,

and mitigations
are specified, verified
and validated based
on analysis.

TA-A_11: All specified
tests are executed
repeatedly, under
defined conditions

in controlled environments,
according to specified
objectives.

TA-A_14: Manual
methodologies applied
for XYZ by contributors,

and their results,
are managed according
to specified objectives.

TA-A_15: Confidence
in XYZ is measured
based on results
of analysis

https://gitlab.com/CodethinkLabs/trustable/trustable

0¥ VS-A8 00 ‘ AN'OO'MNIHLIA0D

TT-PROVENANCE: All
source code (and
attestations for
claims) for XYz

TT-CONSTRUCTION:

Tools are provided
to build XYZ from
trusted sources

are provided with
known provenance.

TA-A_01: All sources
for XYZ and tools
are mirrored in
ur controlled environment

(also provided)
with full reproducibility.

TRUSTABLE-SOFTWARE:
This release of
XYZ is Trustable.

/

N

TT-CHANGES: XYZ
is actively maintained,
with regular updates
to dependencies,
and changes are
verified to prevent

TT-EXPECTATIONS:
Documentation is
provided, specifying
what XYZ is expected
to do, and what
it must not do,
and how this is

TT-RESULTS: Evidence

is provided to demonstrate
that XYZ does what
itis supposed to
do, and does not

do what it must

TT-CONFIDENCE: Confidence
in XYZ is measured
by analysing actual
performance in tests
and in production.

regressions. %
g verified.

/

not do.

TA-A_03: XYZ releases
are constructed
from controlled

or mirrored sources,
and are fully reproducible.

TA-A_06: Known bugs
or misbehaviours
are analysed and

triaged, and critical

fixes or mitigations

are implemented
or applied.

/ TA-A_10: Advance

TA-A_08: Expected warning indicators
or required behaviours for misbehaviours
for XYZ are identified, are identified,
specified, verified and monitoring mechanisms
and validated based are specified, verified
on analysis. and validated based
on analysis.

A,

TA-A_12: Data is
collected from tests,
and from monitoring
of deployed software,
according to specified

objectives.

TA-A_13: Collected
data from tests
and monitoring of
deployed software
is analysed according

to specified objectives.

A

TA-A_02: Components
and tools used to
construct and verify
XYZ are assessed,
to identify potential
risks and issues

TA-A_04: All tests
for XYZ, and its

build and test environments,

are constructed
from controlled
or mirrored sources.

TA-A_0S: All constructed
iterations of XYZ
include source code,
build instructions,
tests, results and
attestations.

TA-A_07: XYZ components,
configurations and
tools are updated

under specified
change and configuration
management controls.

TA-A_09: Prohibited
misbehaviours for
XYZ are identified,
and mitigations
are specified, verified
and validated based
on analysis.

TA-A_11: All specified
tests are executed
repeatedly, under
defined conditions

in controlled environments,
according to specified
objectives.

TA-A_14: Manual
methodologies applied
for XYZ by contributors,

and their results,
are managed according
to specified objectives.

TA-A_15: Confidence
in XYZ is measured
based on results
of analysis

SUPPLY CHAIN: provenance of all dependencies + toolchain components

0¥ VS-A8 00 ‘ AN'OO'MNIHLIA0D

TT-PROVENANCE: All
source code (and
attestations for

TT-CONSTRUCTION:

Tools are provided
to build XYZ from
trusted sources

claims) for XYz
are provided with
known provenance.

(also provided)

with full reproducibility.

TA-A_01: All sources
for XYZ and tools
are mirrored in
our controlled environment

V.

TA-A_03: XYZ releases
are constructed
from controlled

or mirrored sources,
and are fully reproducible.

A-A_06: Known bugs
or misbehaviours
are analysed and
riaged, and critical
ixes or mitigations
are implemented

or applied.

TRUSTABLE-SOFTWARE:
This release of
XYZ is Trustable.

/

N

TT-CHANGES: XYZ
is actively maintained,
with regular updates
to dependencies,
and changes are
verified to prevent
regressions.

TT-EXPECTATIONS:
Documentation is
provided, specifying
what XYZ is expected
to do, and what
it must not do,
and how this is
verified.

TT-RESULTS: Evidence
is provided to demonstrate
that XYZ does what
itis supposed to

do, and does not
do what it must

TT-CONFIDENCE: Confidence
in XYZ is measured
by analysing actual
performance in tests
and in production.

not do.

/ N

TA-A_08: Expected
or required behaviours
for XYZ are identified,
specified, verified
and validated based a

on analysis.

A

and monitoring mechanisms

and validated based

TA-A_10: Advance y

warning indicators TA-A_12: Data is
for misbehaviours collected from tests,
are identified, and from monitoring
of deployed software,
according to specified
objectives.

re specified, verified

TA-A_13: Collected
data from tests
and monitoring of
deployed software
is analysed according
to specified objectives.

on analysis.

TA-A_02: Components
and tools used to
construct and verify
XYZ are assessed,
to identify potential
risks and issues

TA-A_04: All tests
for XYZ, and its
build and test environments,
are constructed
from controlled
or mirrored sources.

TA-A_05: All constructe
iterations of XYZ
include source code,
build instructions,
tests, results and
attestations.

TA-A_07: XYZ components,
configurations and
tools are updated

under specified
change and configuration
management controls.

TA-A_09: Prohibited
misbehaviours for
XYZ are identified,
and mitigations
are specified, verified
and validated based
on analysis.

TA-A_11: All specified
tests are executed
repeatedly, under
defined conditions

in controlled environments,
according to specified

TA-A_14: Manual
methodologies applied
for XYZ by contributors,

and their results,
are managed according
to specified objectives.

TA-A_15: Confidence
in XYZ is measured
based on results
of analysis

objectives.

CONSTRUCTION: zero trust builds -

reproducible, no internet, no root

0¥ VS-A8 00 ‘ AN'OO'MNIHLIA0D

TT-PROVENANCE: All
source code (and
attestations for
claims) for XYz
are provided with
known provenance.

with full reproducibility.

TT-CONSTRUCTION:
Tools are provided
to build XYZ from
trusted sources
(also provided)

TA-A_01: All sources
for XYZ and tools
are mirrored in
our controlled environment

V.

TA-A_06: Known bugs

TA-A_03: XYZ releases
are constructed
from controlled

or mirrored sources,
and are fully reproducible.

or misbehaviours
are analysed and
triaged, and critical
fixes or mitigations
are implemented

or applied.

TRUSTABLE-SOFTWARE:

This release of
XYZ is Trustable.

TT-CHANGES: XYZ
is actively maintained,
with regular updates

to dependencies,

and changes are
verified to prevent

regressions.

N

to do, and what

it must not do,

and how this is
verified.

TT-EXPECTATIONS:
Documentation is
provided, specifying
what XYZ is expected

TT-RESULTS: Evidence
is provided to demonstrate
that XYZ does what
itis supposed to
do, and does not
do what it must
not do.

N

TA-A_08: Expected
or required behaviours
for XYZ are identified,
specified, verified
and validated based
on analysis.

TA-A_10: Advance

warning indicators

for misbehaviours

are identified,
and monitoring mechanisms
are specified, verified
and validated based
on analysis.

TA-A_02: Components
and tools used to
construct and verify
XYZ are assessed,
to identify potential
risks and issues

TA-A_04: All tests
for XYZ, and its
build and test environments,
are constructed
from controlled
or mirrored sources.

TA-A_05: All constructe
iterations of XYZ
include source code,
build instructions,
tests, results and
attestations.

TA-A_07: XYZ componen
configurations and
tools are updated

under specified
change and configuration
management controls.

on analysis.

TA-A_09: Prohibited
misbehaviours for
XYZ are identified,
and mitigations
are specified, verified
and validated based

A,

TT-CONFIDENCE: Confidence
in XYZ is measured
by analysing actual
performance in tests
and in production.

TA-A_12: Data is
collected from tests,
and from monitoring
of deployed software,
according to specified

objectives.

TA-A_13: Collected
data from tests
and monitoring of
deployed software
is analysed according
to specified objectives.

TA-A_11: All specified
tests are executed
repeatedly, under
defined conditions

in controlled environments,
according to specified
objectives.

TA-A_14: Manual
methodologies applied
for XYZ by contributors,

and their results,
are managed according
to specified objectives.

TA-A_15: Confidence
in XYZ is measured
based on results
of analysis

CHANGES: CICD, consuming relevant upstream fixes and releases

0¥ VS-A8 00 ‘ AN'OO'MNIHLIA0D

TT-PROVENANCE: All
source code (and
attestations for
claims) for XYz
are provided with
known provenance.

TT-CONSTRUCTION:
Tools are provided
to build XYZ from

trusted sources
(also provided)
with full reproducibility.

TT-CHANGES: XYZ
is actively maintained,
with regular updates

to dependencies,

and changes are
verified to prevent

TA-A_01: All sources
for XYZ and tools
are mirrored in
our controlled environment

regressions.

/

TA-A_03: XYZ releases
are constructed
from controlled

or mirrored sources,
and are fully reproducible.

TA-A_06: Known bugs
or misbehaviours
are analysed and

triaged, and critical

fixes or mitigations

are implemented
or applied.

TRUSTABLE-SOFTWARE:
This release of
XYZ is Trustable.

TT-EXPECTATIONS:
Documentation is
provided, specifying
what XYZ is expected
to do, and what
it must not do,
and how this is
verified.

TT-RESULTS: Evidence
is provided to demonstrate
that XYZ does what
itis supposed to
do, and does not
do what it must

TT-CONFIDENCE: Confidence
in XYZ is measured
by analysing actual
performance in tests
and in production.

not do.

TA-A_10: Advance

A,

TA-A_08: Expected
or required behaviours
for XYZ are identified,
specified, verified
and validated based
on analysis.

warning indicators
for misbehaviours
are identified,

and monitoring mechanisms
are specified, verified

and validated based
on analysis.

TA-A_12: Data is
collected from tests,
and from monitoring
of deployed software,
according to specified

objectives.

TA-A_13: Collected
data from tests
and monitoring of
deployed software
is analysed according
to specified objectives.

V.

A

TA-A_02: Components
and tools used to
construct and verify
XYZ are assessed,
to identify potential
risks and issues

TA-A_04: All tests
for XYZ, and its

build and test environments,

are constructed
from controlled
or mirrored sources.

TA-A_0S: All constructed
iterations of XYZ
include source code,
build instructions,
tests, results and

attestations.

TA-A_07: XYZ components,
configurations and
tools are updated

under specified
change and configuration
management controls.

TA-A_09: Prohibited
misbehaviours for
XYZ are identified,
and mitigations
are specified, verified
and validated based
on analysis.

in controlled environments,

TA-A_11: All specified
tests are executed
repeatedly, under
defined conditions

according to specified

objectives.

TA-A_14: Manual
methodologies applied
for XYZ by contributors,

and their results,
are managed according
to specified objectives.

TA-A_15: Confidence
in XYZ is measured
based on results
of analysis

EXPECTATIONS: be clear about what it must do, and what can go wrong,
with mitigations and warning mechanisms

0¥ VS-A8 00 ‘ AN'OO'MNIHLIA0D

TT-PROVENANCE: All
source code (and
attestations for
claims) for XYz
are provided with
known provenance.

TT-CONSTRUCTION:
Tools are provided
to build XYZ from
trusted sources
(also provided)
with full reproducibility.

TA-A_01: All sources
for XYZ and tools
are mirrored in
our controlled environment

TRUSTABLE-SOFTWARE:
This release of
XYZ is Trustable.

/

TT-CHANGES: XYZ
is actively maintained,
with regular updates

to dependencies,

and changes are
verified to prevent

regressions.

TT-EXPECTATIONS:
Documentation is
provided, specifying
what XYZ is expected
to do, and what
it must not do,
and how this is

TT-RESULTS: Evidence
is provided to demonstrate
that XYZ does what
itis supposed to
do, and does not
do what it must
not do.

TT-CONFIDENCE: Confidence
in XYZ is measured
by analysing actual
performance in tests
and in production.

N

TA-A_03: XYZ releases
are constructed
from controlled

or mirrored sources,
and are fully reproducible.

TA-A_06: Known bugs
or misbehaviours
are analysed and

triaged, and critical

fixes or mitigations

are implemented
or applied.

verified.

TA-A_08: Expected
or required behaviours
for XYZ are identified,
specified, verified
and validated based
on analysis.

TA-A_10: Advance

warning indicators

for misbehaviours
are identified,

and monitoring mechanisms

are specified, verified
and validated based
on analysis.

A,

TA-A_12: Data is
collected from tests,
and from monitoring
of deployed software,
according to specified

objectives.

TA-A_13: Collected
data from tests
and monitoring of
deployed software
is analysed according

to specified objectives.

V.

A

TA-A_02: Components
and tools used to
construct and verify
XYZ are assessed,
to identify potential
risks and issues

TA-A_04: All tests
for XYZ, and its

build and test environments,

are constructed
from controlled
or mirrored sources.

TA-A_0S: All constructed
iterations of XYZ
include source code,
build instructions,
tests, results and
attestations.

TA-A_07: XYZ components,
configurations and
tools are updated

under specified
change and configuration
management controls.

TA-A_09: Prohibited
misbehaviours for
XYZ are identified,
and mitigations
are specified, verified
and validated based
on analysis.

TA-A_11: All specified
tests are executed
repeatedly, under
defined conditions

in controlled environments,
according to specified
objectives.

TA-A_14: Manual
methodologies applied
for XYZ by contributors,

and their results,
are managed according
to specified objectives.

TA-A_15: Confidence
in XYZ is measured
based on results
of analysis

RESULTS: ongoing automated tests, including fault injection tests, with
results captured and analysed over time

0¥ VS-A8 00 ‘ AN'OO'MNIHLIA0D

Digression... some results for Linux scheduling

QEMU Scheduling

1,000,000,000
500,000,000
200,000,000
100,000,000
50,000,000
20,000,000
10,000,000
5,000,000
2,000,000
1,000,000
500,000
200,000
100,000
50,000
20,000
10,000
5,000

Sample count

2,000
1,000
500

200
100
50

10
5

2
1

QEMU

100,000,000
40,000,000

10,000,000
4,000,000

1,000,000
400,000

100,000
40,000

10,000
4,000

1,000
400

100
40

10
4

1

Samples

20th h

t 271
January 2025

6.5

55

45

35

25

15

0.5

P7/count%

® © & © o & 0 0 0 o

e o

L]

0% to 50%
50% to 70%
70% to 90%
90% to 95%
95% to 97%
97% to 99%
99% to0 101%
101% to 103%
103% to 105%
105% 110%
110% to 130%
130% to 150%
150% to 170%
170% to 190%
190% to 210%

Sum P14..P19
Samples

Count

Sum P6
P7/count%
P14..P19/count ...
Sum P7

NUC Scheduling

Sample count

Nuc

Samples

10,000,000,000

1,000,000,000

100,000,000

10,000,000

1,000,000

100,000

10,000

1,000

100

10

1

1,000,000,000
300,000,000
100,000,000
30,000,000
10,000,000
3,000,000
1,000,000
300,000
100,000
30,000
10,000
3,000

1,000

300

100

30

10

3

i

§ -
Nm—

i, e

20th 127th

b o

January 2025
@timestamp per 3 hours

P7/count%

e o ® © 06 © » @ 0 0 0 o

0% to 50%
50% to 70%
70% to 90%
90% to 95%
95% to 97%
97% to 99%
99% t0 101%
101% to 103%
103% to 105%
105% 110%
110% to 130%
130% to 150%
150% to 170%
170% to 190%
190% to 210%

Sum P14..P19
Samples

Count

Sum P6
P7/count%
P14..P19/count ...
Sum P7

ROCKSb Scheduling
10,000,000,000
1,000,000,000
100,000,000
10,000,000
1,000,000

100,000

Sample count

10,000

1,000

100

10

1

RockSb

1,000,000,000
300,000,000
100,000,000
30,000,000
10,000,000
3,000,000
1,000,000
300,000
100,000
30,000
10,000
3,000

1,000

300

100

30

10

3

1

Samples

20th 127th
January 2025

@timestamp per 3 hours

P7/count%

e o

L]

(©)

0% to 50%
50% to 70%
70% to 90%
90% to 95%
95% to 97%
97% to 99%
99% t0 101%
101% to 103%
103% to 105%
105% 110%
110% to 130%
130% to 150%
150% to 170%
170% to 190%
190% to 210%

v vona v | o aminaad00

Sum P14..P19
Samples

Count

Sum P6
P7/count%
P14..P19/count ...
Sum P7

TRUSTABLE-SOFTWARE:

This release of
XYZ is Trustable.

/N

TT-PROVENANCE: All
source code (and
attestations for
claims) for XYz
are provided with
known provenance.

with full reproducibility.

TT-CONSTRUCTION:
Tools are provided
to build XYZ from
trusted sources
(also provided)

TT-CHANGES: XYZ
is actively maintained,
with regular updates
to dependencies,
and changes are
verified to prevent
regressions.

TT-EXPECTATIONS:
Documentation is
provided, specifying
what XYZ is expected
to do, and what
it must not do,
and how this is
verified.

TT-RESULTS: Evidence

is provided to demonstrate

that XYZ does what
itis supposed to
do, and does not
do what it must
not do.

TA-A_01: All sources
for XYZ and tools
are mirrored in
our controlled environment

/

TA-A_03: XYZ releases
are constructed
from controlled

or mirrored sources,
and are fully reproducible.

TA-A_06: Known bugs
or misbehaviours
are analysed and

triaged, and critical

fixes or mitigations

are implemented
or applied.

/

N

TA-A_08: Expected
or required behaviours
for XYZ are identified,
specified, verified
and validated based
on analysis.

TA-A_10: Advance

warning indicators

for misbehaviours
are identified,

and monitoring mechanisms

are specified, verified
and validated based
on analysis.

A,

TT-CONFIDENCE: Confidence
in XYZ is measured
by analysing actual
performance in tests
and in production.

TA-A_12: Data is
collected from tests,
and from monitoring
of deployed software,
according to specified

objectives.

TA-A_13: Collected
data from tests
and monitoring of
deployed software
is analysed according
to specified objectives.

V.

A

TA-A_02: Components
and tools used to
construct and verify
XYZ are assessed,
to identify potential
risks and issues

TA-A_04: All tests
for XYZ, and its

build and test environments,

are constructed
from controlled
or mirrored sources.

TA-A_0S: All constructed
iterations of XYZ
include source code,
build instructions,
tests, results and
attestations.

TA-A_07: XYZ components,
configurations and
tools are updated

under specified
change and configuration
management controls.

TA-A_09: Prohibited
misbehaviours for
XYZ are identified,
and mitigations
are specified, verified
and validated based
on analysis.

TA-A_11: All specified
tests are executed
repeatedly, under
defined conditions

in controlled environments,
according to specified
objectives.

TA-A_14: Manual
methodologies applied
for XYZ by contributors,

and their results,
are managed according
to specified objectives.

TA-A_15: Confidence
in XYZ is measured
based on results
of analysis

CONFIDENCE: assess all of the evidence, and report confidence scores

0¥ VS-A8 00 ‘ AN'OO'MNIHLIA0D

https://github.com/doorstop-dev/doorstop

() Linux [passing § €) macOS [passing §) Windows [passing

coverage [97% code quality 14.9: pypi v3.0
chat ‘on gi‘ttef& forum on google § openssf best practices RigNelgele|g=EERFA) v

Overview

Doorstop is a requirements management tool that facilitates the storage of textual requirements alongside source
code in version control.

When a project leverages this tool, each linkable item (requirement, test case, etc.) is stored as a
& YAML file in a designated directory. The items in each directory form a document. The relationship
\‘ between documents forms a tree hierarchy. Doorstop provides mechanisms for modifying this
tree, validating item traceability, and publishing documents in several formats.

Doorstop is under active development and we welcome contributions. The project is licensed as LGPLv3. To report
a problem or a security vulnerability please raise an issue. Additional references:

e Publication: JSEA Paper
¢ Talks: GRDevDay, BarCamp
¢ Sample: Generated HTML

0¥ VS-A8 00 ‘ AN'OO'MNIHLIA0D

https://codethinklabs.gitlab.io/trustable/trustable/doorstop/trustable_report_for_TSF.html

@ Trustable Software Framework = @& Q search

Trustable Reports Compliance Dotstop

Trustable Compliance Report

Compliance for TT

Status key

Item Summary

UYnreviewed Trustable Score 0% TT-PROVENANCE All source code (and attestations for claims) for XYZ are provided with known provenance.
Suspect Link Effective Trustable Score 0%
TT-CONSTRUCTION Tools are provided to build XYZ from trusted sources (also provided) with full reproducibility.

Very Low Confidence Trustable Score 0-50%
Trustable Score 50-75% TT-CHANGES XYZ is actively maintained, with regular updates to dependencies, and changes are verified to prevent regressions.
Moderate ConfidenceIVE 1ol CRSTele] (CWARCI057
High Confidence Trustable Score 90-100%

TT-EXPECTATIONS Documentation is provided, specifying what XYZ is expected to do, and what it must not do, and how this is verified.
TT-RESULTS Evidence is provided to demonstrate that XYZ does what it is supposed to do, and does not do what it must not do.

TT-CONFIDENCE Confidence in XYZ is measured by analysing actual performance in tests and in production.

Compliance for TRUSTABLE

Iltem Summary Score

TRUSTABLE-SOFTWARE This release of XYZ is Trustable. 0.00

(©)

07 VS A8-00 | MN'OOMNIHLIA0D

Hi Paul. Well done, your score is Excellent.

Your score updates in 26 days. Upgrade for daily score updates >

Your credit

This is the most recent information as supplied and used by lenders, it could be up to

Your score has Stayed the same four to six weeks old. Don't recognise this information?

Your total borrowing

Our records do not show any active credit accounts for you.
Your score is

We are proposing a Trustable Score for software,

like a Credit Score for a person/organisation

@

:‘:’: https://gitlab.com/CodethinkLabs/safety-monitor/safety-monito

m: TT-CHANGES_CONTEXT.md [} 1.40KiB

CodethinkLabs / () safety-monitor / (%) Safety Monitor

safety-monitor will be
a worked example for
applying TSF in the

| reviewed: gPUFSKBSLItn9hMWbM39cBAWACtZ8VDA1I7W76Ivsw= O p e n
Trustable tenents and assertions refer to “safety-monitor™ e

Nimrod Libman authored 23 hours ago Guidance

#¥ main v | safety-monitor / trustable / tenets / TT-CHANGES.n S

derived: false
Tlevel: 1.3.1

* TT-CHANGES.md i

normative:

0¥ VS A8-00 ‘ AN'OO'MNIHLIA0D

false

We expect that safety-monitor will need to be modified many times during its useful/production lifetime, and therefore we need to be sure that we can make changes without
breaking it. In practice this means being able to deal with updates to dependencies and tools, as well as updates to safety-monitor itself.

M+ TT-CHANGES.md [3 329B Note that this implies that we need to be able to:

« verify that updated safety-monitor still satisfies its expectations (see below), and
+ understand the behaviour of upstream/suppliers in delivering updates (e.g. frequency of planned updates, responsiveness for unplanned updates such as security fixes).

We need to consider the maturity of safety-monitor, since new software is likely to contain more undiscovered faults/bugs and thus require more changes. To support this we

active: true need to be able to understand, quantify and analyse changes made to safety-monitor (and its dependencies) on an ongoing basis, and to assess the safety-monitor approach

derived: false to bugs and breaking changes.

level: 1.3 We also need to be able to make modifications to any/all third-party components of safety-monitor and dependencies of safety-monitor , unless we are completely confident
1links: that suppliers/upstream will satisfy our needs throughout safety-monitor 's production lifecycle.

- TRUSTABLE-SOFTWARE: k9bSLhy8er73LckFPZygJZcKnahtcy

normative: true

e 1A
reviewed: UpOkuadAOFHpUXzjPkpFAXgJfU7u9IpA7PL1_I-8wéc=

safety-monitor is actively maintained, with regular updates to dependencies, and changes are verified to prevent regressions.

We are also hoping to apply the
approach to some of the Eclipse

SDV projects

@ Takeaways...

fully free and open source - Eclipse project
automatable (mostly) - intended for use in CICD
desighed to complement established processes
applicable for existing software, including FLOSS
extensible e.g. as a basis for mapping to standards

maybe useful for “manufacturers + stewards" as a basis for driving
towards CRA compliance?

34

@ Takeaways...

fully free and open source - Eclipse project
automatable (mostly) - intended for use in CICD
designed to complement established processes
applicable for existing software, including FLOSS
extensible e.g. as a basis for mapping to standards

maybe useful for “manufacturers + stewards" as a basis for driving
towards CRA compliance?

Lots of work still to do... please help:

critique the model and the approach, help us increase rigour and
confidence in what scores are

apply trustable scoring to your project, help us improve the method,
documentation and correlation between scores and project outcomes

35

Thank You.

paul.sherwood@codethink.co.uk
https://lists.trustable.io/cgi-bin/mailman/listinfo/trustable-software

Codethink LTD

3rd Floor Dale House,
35 Dale Street,

MANCHESTER,
@ M1 2HF
United Kingdom

